Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator

J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, A. Laing, J. G. Rarity, J. L. O'Brien, M. G. Thompson

Research output: Chapter in Book/Conference paperConference paperpeer-review

Abstract

We present the experimental demonstration of quantum Hamiltonian learning. Using an integrated silicon-photonics quantum simulator with the classical machine learning technique, we successfully learn the Hamiltonian dynamics of a diamond nitrogen-vacancy center's electron ground-state spin.

Original languageEnglish
Title of host publication2017 Conference on Lasers and Electro-Optics, CLEO 2017 - Proceedings
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages1-2
Number of pages2
ISBN (Electronic)9781943580279
ISBN (Print)9781943580279
DOIs
Publication statusPublished - 25 Oct 2017
Externally publishedYes
Event2017 Conference on Lasers and Electro-Optics, CLEO 2017 - San Jose, United States
Duration: 14 May 201719 May 2017
https://www.cleoconference.org/library/images/cleo/Archive/CLEO-Archive-2017.pdf

Publication series

NameOptics InfoBase Conference Papers
VolumePart F42-CLEO_QELS 2017

Conference

Conference2017 Conference on Lasers and Electro-Optics, CLEO 2017
Country/TerritoryUnited States
CitySan Jose
Period14/05/1719/05/17
Internet address

Fingerprint

Dive into the research topics of 'Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator'. Together they form a unique fingerprint.

Cite this