Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities

Klaus Regenauer-Lieb, Florian Fusseis

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)


    The total rate of rock deformation results from competing deformation processes, including ductile and brittle mechanisms. Particular deformation styles arise from the dominance of certain mechanisms over others at different ambient conditions. Surprisingly, rates of deformation in naturally deformed rocks are found to cluster around two extremes, representing coseismic slip rates or viscous creep rates. Classical rock mechanics is traditionally used to interpret these instabilities. These approaches consider the principle of conservation of energy. We propose to go one step further and introduce a nonlinear far-from-equilibrium thermodynamic approach in which the central and explicit role of entropy controls instabilities. We also show how this quantity might be calculated for complex crustal systems. This approach provides strain-rate partitioning for natural deformation processes occurring at rates in the order of 10-3 to 10-9 s-1. We discuss these processes using examples of landslides and ice quakes or glacial surges. We will then illustrate how the mechanical mechanisms derived from these near-surface processes can be applied to deformation near the base of the seismogenic crust, especially to the phenomenon of slow earthquakes.
    Original languageEnglish
    Pages (from-to)1885-1908
    JournalPure and Applied Geophysics
    Issue number10-11
    Publication statusPublished - 2009

    Cite this