Knocking out the vitamin d receptor enhances malignancy and decreases responsiveness to vitamin d3 hydroxyderivatives in human melanoma cells

Ewa Podgorska, Tae Kang Kim, Zorica Janjetovic, Krystyna Urbanska, Robert C. Tuckey, Sejong Bae, Andrzej T. Slominski

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Vitamin D3 is not only involved in calcium and phosphate metabolism in humans, but it can also affect proliferation and differentiation of normal and cancer cells, including melanoma. The mechanism of the anti-cancer action of vitamin D3 is not fully understood. The nuclear vitamin D receptor (VDR) is crucial for the phenotypic effects of vitamin D hydroxyderivatives. VDR expression shows an inverse correlation with melanoma progression and poor outcome of the disease. In this study we knocked out the VDR in a human melanoma cell line using CRISPR methodology. This enhanced the proliferation of melanoma cells grown in monolayer culture, spheroids or colonies and their migration. Activated forms of vitamin D, including classical 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while VDR KO cells showed a degree of resistance to their action. These results indicate that expression of VDR is important for the inhibition of melanoma growth induced by activated forms of vitamin D. In conclusion, based on our previous clinicopathological analyses and the current study, we suggest that the VDR can function as a melanoma tumor suppressor gene.

Original languageEnglish
Article number3111
JournalCancers
Volume13
Issue number13
DOIs
Publication statusPublished - 1 Jul 2021

Fingerprint

Dive into the research topics of 'Knocking out the vitamin d receptor enhances malignancy and decreases responsiveness to vitamin d3 hydroxyderivatives in human melanoma cells'. Together they form a unique fingerprint.

Cite this