Joint smoothed l0-norm DOA estimation algorithm for multiple measurement vectors in MIMO radar

Jing Liu, Weidong Zhou, Filbert H. Juwono

    Research output: Contribution to journalArticle

    11 Citations (Scopus)

    Abstract

    Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l0-norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l0-norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l1-norm minimization based methods, such as l1-SVD (singular value decomposition), RV (real-valued) l1-SVD and RV l1-SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

    Original languageEnglish
    Article number1068
    JournalSensors (Switzerland)
    Volume17
    Issue number5
    DOIs
    Publication statusPublished - 8 May 2017

    Fingerprint Dive into the research topics of 'Joint smoothed l<sub>0</sub>-norm DOA estimation algorithm for multiple measurement vectors in MIMO radar'. Together they form a unique fingerprint.

    Cite this