Projects per year
Abstract
2. We grew X. occidentale in hydroponics at 1 μM P. Leaves, seeds, rhizosheath and bulk soil were collected in natural habitats.
3. Xylomelum occidentale did not produce functional cluster roots and occupied soils that are somewhat less P‐impoverished than those in typical Proteaceae habitats in the region. Based on measurements of foliar manganese concentrations (a proxy for rhizosphere carboxylate concentrations) and P fractions in bulk and rhizosheath soil, we conclude that X. occidentale accesses organic P, without releasing carboxylates. Solution 31P‐NMR spectroscopy revealed which organic P forms X. occidentale accessed.
4. Xylomelum occidentale uses a strategy that differs fundamentally from that typical in Proteaceae, accessing soil organic P without carboxylates. We surmise that this novel strategy is likely expressed also in co‐occurring non‐Proteaceae that lack a carboxylate‐exuding strategy. These co‐occurring species are unlikely to benefit from mycorrhizal associations, because plant‐available soil P concentrations are too low.
5. Synthesis. Our findings show the first field evidence of effectively utilising soil organic P by X. occidentale without carboxylate exudation and explain their relatively restricted distribution in an old P‐impoverished landscape, contributing to a better understanding of how diverse P‐acquisition strategies coexist in a megadiverse ecosystem.
Original language | English |
---|---|
Pages (from-to) | 246-259 |
Number of pages | 14 |
Journal | Journal of Ecology |
Volume | 109 |
Issue number | 1 |
Early online date | 11 Jul 2020 |
DOIs | |
Publication status | Published - Jan 2021 |
Fingerprint
Dive into the research topics of 'Xylomelum occidentale (Proteaceae) accesses relatively mobile soil organic phosphorus without releasing carboxylates'. Together they form a unique fingerprint.Datasets
-
Xylomelum occidentale (Proteaceae) accesses relatively mobile soil organic phosphorus without releasing carboxylates
Zhong, H. (Creator), Zhou, J. (Contributor), Azmi, A. (Creator), Arruda, A. (Creator), Doolette, A. (Creator), Smernik, R. (Creator), Lambers, H. (Creator), Wan Azmi, A. (Contributor), Jardim Arruda, A. (Creator), Doolette, A. L. (Creator) & Smernik, R. J. (Creator), DRYAD, 24 Jul 2020
DOI: 10.5061/dryad.05qfttdz7, https://zenodo.org/record/3964886 and one more link, http://datadryad.org/stash/dataset/doi:10.5061/dryad.05qfttdz7 (show fewer)
Dataset
Projects
- 2 Finished
-
Molecular mechanisms underlying extensive replacement of phospholipids by galactolipids and sulfolipids in Hakea prostrata during leaf development
Finnegan, P. (Investigator 01) & Giavalisco, P. (Investigator 02)
ARC Australian Research Council
1/01/14 → 31/12/17
Project: Research
-
Does Calcium Toxicity Explain the Absence of Most Proteaceae from Calcarous Habitats
Lambers, H. (Investigator 01), Clode, P. (Investigator 02), Hammond, J. (Investigator 03) & White, P. (Investigator 04)
ARC Australian Research Council
1/01/13 → 31/12/15
Project: Research