TY - JOUR
T1 - Is the fusiform face area specialized for faces, individuation, or expert individuation?
AU - Rhodes, Gillian
AU - Byatt, G.
AU - Michie, P.T.
AU - Puce, A.
PY - 2004
Y1 - 2004
N2 - Several brain imaging studies have identified a region of fusiform gyrus (FG) that responds more strongly to faces than common objects. The precise functional role of this fusiform face area (FFA) is, however, a matter of dispute. We sought to distinguish among three hypotheses concerning FFA function: face specificity, individuation, and expert individuation. According to the face-specificity hypothesis, the FFA is specialized for face processing. Alternatively, the FFA may be specialized for individuating visually similar items within a category (the individuation hypothesis) or for individuating within categories with which a person has expertise (the expert-individuation hypothesis). Our results from two experiments supported the face-specificity hypothesis. Greater FFA activation to faces than Lepidoptera, another homogeneous object class, occurred during both free viewing and individuation, with similar FFA activation to LePidoptera and common objects (Experiment 1). Furthermore, during individuation of Lepidoptera, 83% of activated FG voxels were outside the face FG region and only 15% of face FG voxels were activated. This pattern of results suggests that distinct areas may individuate faces and Lepidoptera. In Experiment 2, we tested Lepidoptera experts using the same experimental design. Again, the results supported the face-specificity hypothesis. Activation to faces in the FFA was greater than to both Lepidoptera and objects with little overlap between FG areas activated by faces and Lepidoptera. Our results suggest that distinct populations of neurons in human FG may be tuned to the features needed to individuate the members of different object classes, as has been reported in monkey inferotemporal cortex, and that the FFA contains neurons tuned for individuating faces.
AB - Several brain imaging studies have identified a region of fusiform gyrus (FG) that responds more strongly to faces than common objects. The precise functional role of this fusiform face area (FFA) is, however, a matter of dispute. We sought to distinguish among three hypotheses concerning FFA function: face specificity, individuation, and expert individuation. According to the face-specificity hypothesis, the FFA is specialized for face processing. Alternatively, the FFA may be specialized for individuating visually similar items within a category (the individuation hypothesis) or for individuating within categories with which a person has expertise (the expert-individuation hypothesis). Our results from two experiments supported the face-specificity hypothesis. Greater FFA activation to faces than Lepidoptera, another homogeneous object class, occurred during both free viewing and individuation, with similar FFA activation to LePidoptera and common objects (Experiment 1). Furthermore, during individuation of Lepidoptera, 83% of activated FG voxels were outside the face FG region and only 15% of face FG voxels were activated. This pattern of results suggests that distinct areas may individuate faces and Lepidoptera. In Experiment 2, we tested Lepidoptera experts using the same experimental design. Again, the results supported the face-specificity hypothesis. Activation to faces in the FFA was greater than to both Lepidoptera and objects with little overlap between FG areas activated by faces and Lepidoptera. Our results suggest that distinct populations of neurons in human FG may be tuned to the features needed to individuate the members of different object classes, as has been reported in monkey inferotemporal cortex, and that the FFA contains neurons tuned for individuating faces.
U2 - 10.1162/089892904322984508
DO - 10.1162/089892904322984508
M3 - Article
C2 - 15068591
VL - 16
SP - 189
EP - 203
JO - Journal of Cognitive Neuroscience
JF - Journal of Cognitive Neuroscience
SN - 0898-929X
IS - 2
ER -