TY - JOUR
T1 - IRRIGATION OF CHICKPEA (CICER ARIETINUM L.) INCREASES YIELD BUT NOT WATER PRODUCTIVITY
AU - Singh, G.
AU - Ram, H.
AU - Aggarwal, N.
AU - Turner, Neil C.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Copyright © Cambridge University Press 2015. The depth to ground water is increasing in several regions of the world due to use of high-yielding, but also high water-requiring crops such as rice (Oryza sativa) and wheat (Triticum aestivum), in order to maintain food security for an ever increasing world population. There is a need not only to increase the water productivity of food crops, but also to find less water-requiring crops. Irrigated chickpea (Cicer arietinum L.), traditionally grown without irrigation, may provide an alternative crop to irrigated wheat in some regions. Two field experiments were conducted to determine the effects of irrigation on chickpea yields, yield components and grain and biomass water productivity (based on irrigation (WPI) and irrigation + rainfall (WPI+R)) grown in a loamy sand soil. In the first year, 75 mm of irrigation at the vegetative stage and at the vegetative plus podding stages resulted in a 59% and a 73% increase in grain yield, respectively, compared to no irrigation, but with little change in WPI+R. Overall yields in the second year were significantly higher due to warmer temperatures and fewer frosts during flowering and podding. Compared to no irrigation, 75 mm of irrigation at flowering or at podding resulted in a 7% and a 27% increase in grain yield, but a decrease in grain and biomass water productivity (WPI+R). Irrigation had a significant effect on the number of pods plant-1 in both the years and on 100-seed weight in the first year. We conclude that application of a single irrigation during podding to chickpea grown in a loamy sand soil will reliably increase yields and may provide a water-saving alternative to wheat in water-scarce environments.
AB - Copyright © Cambridge University Press 2015. The depth to ground water is increasing in several regions of the world due to use of high-yielding, but also high water-requiring crops such as rice (Oryza sativa) and wheat (Triticum aestivum), in order to maintain food security for an ever increasing world population. There is a need not only to increase the water productivity of food crops, but also to find less water-requiring crops. Irrigated chickpea (Cicer arietinum L.), traditionally grown without irrigation, may provide an alternative crop to irrigated wheat in some regions. Two field experiments were conducted to determine the effects of irrigation on chickpea yields, yield components and grain and biomass water productivity (based on irrigation (WPI) and irrigation + rainfall (WPI+R)) grown in a loamy sand soil. In the first year, 75 mm of irrigation at the vegetative stage and at the vegetative plus podding stages resulted in a 59% and a 73% increase in grain yield, respectively, compared to no irrigation, but with little change in WPI+R. Overall yields in the second year were significantly higher due to warmer temperatures and fewer frosts during flowering and podding. Compared to no irrigation, 75 mm of irrigation at flowering or at podding resulted in a 7% and a 27% increase in grain yield, but a decrease in grain and biomass water productivity (WPI+R). Irrigation had a significant effect on the number of pods plant-1 in both the years and on 100-seed weight in the first year. We conclude that application of a single irrigation during podding to chickpea grown in a loamy sand soil will reliably increase yields and may provide a water-saving alternative to wheat in water-scarce environments.
U2 - 10.1017/S0014479714000520
DO - 10.1017/S0014479714000520
M3 - Article
SN - 0014-4797
VL - 52
SP - 1
EP - 13
JO - Experimental Agriculture
JF - Experimental Agriculture
IS - 1
ER -