Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cells

Yi Cheng, Shuai He, Shanfu Lu, Jean-Pierre Veder, Bernt Johannessen, Lars Thomsen, Martin Saunders, Thomas Becker, Roland De Marco, Qingfeng Li, Shi-ze Yang, San Ping Jiang

Research output: Contribution to journalArticle

34 Citations (Scopus)


Iron single atom catalysts (Fe SACS) are the best-known nonprecious metal (NPM) catalysts for the oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs), but their practical application has been constrained by the low Fe SACs loading (<2 wt%). Here, a one-pot pyrolysis method is reported for the synthesis of iron single atoms on graphene (FeSA-G) with a high Fe SAC loading of approximate to 7.7 +/- 1.3 wt%. The as-synthesized FeSA-G shows an onset potential of 0.950 V and a half-wave potential of 0.804 V in acid electrolyte for the ORR, similar to that of Pt/C catalysts but with a much higher stability and higher phosphate anion tolerance. High temperature SiO2 nanopartide-doped phosphoric acid/polybenzimidazole (PA/PBI/SiO2) composite membrane cells utilizing a FeSA-G cathode with Fe SAC loading of 0.3 mg cm(-2) delivers a peak power density of 325 mW cm(-2) at 230 degrees C, better than 313 mW cm(-2) obtained on the cell with a Pt/C cathode at a Pt loading of 1 mg cm(-2). The cell with FeSA-G cathode exhibits superior stability at 230 degrees C, as compared to that with Pt/C cathode. Our results provide a new approach to developing practical NPM catalysts to replace Pt-based catalysts for fuel cells.

Original languageEnglish
Article number1802066
Number of pages8
JournalAdvanced Science
Issue number10
Publication statusPublished - 17 May 2019

Cite this