Investigating the roles of regulatory T cells, mast cells and interleukin-9 in the control of skin inflammation by vitamin D

Shelley Gorman, Sian Geldenhuys, Clare Weeden, M.A. Grimbaldeston, Prudence Hart

Research output: Contribution to journalArticle

Abstract

Topical application of biologically active vitamin D [1,25-dihydroxyvitamin D (1,25(OH)2D)], or low-calcemic analogues, curb skin inflammation through mechanisms that involve migratory dendritic cells (DCs) and regulatory T (TReg) cells. 1,25(OH)2D also promotes immunoregulation by mast cells, and inhibits the development of T helper type-9 (Th9) cells that secrete interleukin-9 (IL-9). Here, we investigated the ability of topical 1,25(OH)2D to suppress contact dermatitis through an IL-9-dependent process, examining mast cells and IL-9-secreting T cells. Contact dermatitis was modelled in adult BALB/c female mice by initiating a “biphasic ear swelling response” following a single application of 2,4-dinitrofluorobenzene (DNFB). Topical 1,25(OH)2D (125 ng) applied to ear pinnae prior to (but not after) DNFB sensitisation suppressed the efferent phase of the ear swelling response. This dose of 1,25(OH)2D did not cause hypercalcemia. At the peak of the efferent ear swelling response, proportions of TReg (CD3 + Foxp3+) cells and numbers of mast cells were increased in ear skin of 1,25(OH)2D-treated mice. Topical 1,25(OH)2D increased the proportion of Foxp3 + IL-9 + TReg cells and the capacity of TReg cells to secrete IL-9 ex vivo. However, the proportion of the IL-9 + cells of the total TReg cell population was small (< 1%), and the amount of IL-9 secreted by TReg cells from mice treated with IL-9 was low (< 50 pg/ml). Furthermore, injection of anti-IL-9 neutralising antibody (100 µg, intraperitoneally) prior to sensitisation did not significantly reverse the suppressive effects of 1,25(OH)2D. In conclusion, topically applied 1,25(OH)2D suppressed the efferent phase of a biphasic cutaneous ear swelling response through mechanism(s) that may be dependent on mast cells and TReg cells; however, the role of IL-9 in mediating these responses is uncertain. More studies are needed to further characterise the mechanisms by which topical 1,25(OH)2D modulates cell-mediated immune responses central to its suppressive effects upon contact dermatitis. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
Original languageEnglish
Pages (from-to)221-230
Number of pages10
JournalArchives of Dermatological Research
Volume310
Issue number3
DOIs
Publication statusPublished - 1 Apr 2018

Fingerprint

Interleukin-9
Regulatory T-Lymphocytes
Mast Cells
Vitamin D
Inflammation
Skin
Ear
Contact Dermatitis
Dinitrofluorobenzene
Ear Auricle
Hypercalcemia
Helper-Inducer T-Lymphocytes
Neutralizing Antibodies
Dendritic Cells
Germany
Cell Count

Cite this

@article{0871689d7ae5420bac9af858af88630f,
title = "Investigating the roles of regulatory T cells, mast cells and interleukin-9 in the control of skin inflammation by vitamin D",
abstract = "Topical application of biologically active vitamin D [1,25-dihydroxyvitamin D (1,25(OH)2D)], or low-calcemic analogues, curb skin inflammation through mechanisms that involve migratory dendritic cells (DCs) and regulatory T (TReg) cells. 1,25(OH)2D also promotes immunoregulation by mast cells, and inhibits the development of T helper type-9 (Th9) cells that secrete interleukin-9 (IL-9). Here, we investigated the ability of topical 1,25(OH)2D to suppress contact dermatitis through an IL-9-dependent process, examining mast cells and IL-9-secreting T cells. Contact dermatitis was modelled in adult BALB/c female mice by initiating a “biphasic ear swelling response” following a single application of 2,4-dinitrofluorobenzene (DNFB). Topical 1,25(OH)2D (125 ng) applied to ear pinnae prior to (but not after) DNFB sensitisation suppressed the efferent phase of the ear swelling response. This dose of 1,25(OH)2D did not cause hypercalcemia. At the peak of the efferent ear swelling response, proportions of TReg (CD3 + Foxp3+) cells and numbers of mast cells were increased in ear skin of 1,25(OH)2D-treated mice. Topical 1,25(OH)2D increased the proportion of Foxp3 + IL-9 + TReg cells and the capacity of TReg cells to secrete IL-9 ex vivo. However, the proportion of the IL-9 + cells of the total TReg cell population was small (< 1{\%}), and the amount of IL-9 secreted by TReg cells from mice treated with IL-9 was low (< 50 pg/ml). Furthermore, injection of anti-IL-9 neutralising antibody (100 µg, intraperitoneally) prior to sensitisation did not significantly reverse the suppressive effects of 1,25(OH)2D. In conclusion, topically applied 1,25(OH)2D suppressed the efferent phase of a biphasic cutaneous ear swelling response through mechanism(s) that may be dependent on mast cells and TReg cells; however, the role of IL-9 in mediating these responses is uncertain. More studies are needed to further characterise the mechanisms by which topical 1,25(OH)2D modulates cell-mediated immune responses central to its suppressive effects upon contact dermatitis. {\circledC} 2018, Springer-Verlag GmbH Germany, part of Springer Nature.",
author = "Shelley Gorman and Sian Geldenhuys and Clare Weeden and M.A. Grimbaldeston and Prudence Hart",
year = "2018",
month = "4",
day = "1",
doi = "10.1007/s00403-018-1814-z",
language = "English",
volume = "310",
pages = "221--230",
journal = "Archives of Dermatological Research",
issn = "0340-3696",
publisher = "Springer",
number = "3",

}

Investigating the roles of regulatory T cells, mast cells and interleukin-9 in the control of skin inflammation by vitamin D. / Gorman, Shelley; Geldenhuys, Sian; Weeden, Clare; Grimbaldeston, M.A.; Hart, Prudence.

In: Archives of Dermatological Research, Vol. 310, No. 3, 01.04.2018, p. 221-230.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Investigating the roles of regulatory T cells, mast cells and interleukin-9 in the control of skin inflammation by vitamin D

AU - Gorman, Shelley

AU - Geldenhuys, Sian

AU - Weeden, Clare

AU - Grimbaldeston, M.A.

AU - Hart, Prudence

PY - 2018/4/1

Y1 - 2018/4/1

N2 - Topical application of biologically active vitamin D [1,25-dihydroxyvitamin D (1,25(OH)2D)], or low-calcemic analogues, curb skin inflammation through mechanisms that involve migratory dendritic cells (DCs) and regulatory T (TReg) cells. 1,25(OH)2D also promotes immunoregulation by mast cells, and inhibits the development of T helper type-9 (Th9) cells that secrete interleukin-9 (IL-9). Here, we investigated the ability of topical 1,25(OH)2D to suppress contact dermatitis through an IL-9-dependent process, examining mast cells and IL-9-secreting T cells. Contact dermatitis was modelled in adult BALB/c female mice by initiating a “biphasic ear swelling response” following a single application of 2,4-dinitrofluorobenzene (DNFB). Topical 1,25(OH)2D (125 ng) applied to ear pinnae prior to (but not after) DNFB sensitisation suppressed the efferent phase of the ear swelling response. This dose of 1,25(OH)2D did not cause hypercalcemia. At the peak of the efferent ear swelling response, proportions of TReg (CD3 + Foxp3+) cells and numbers of mast cells were increased in ear skin of 1,25(OH)2D-treated mice. Topical 1,25(OH)2D increased the proportion of Foxp3 + IL-9 + TReg cells and the capacity of TReg cells to secrete IL-9 ex vivo. However, the proportion of the IL-9 + cells of the total TReg cell population was small (< 1%), and the amount of IL-9 secreted by TReg cells from mice treated with IL-9 was low (< 50 pg/ml). Furthermore, injection of anti-IL-9 neutralising antibody (100 µg, intraperitoneally) prior to sensitisation did not significantly reverse the suppressive effects of 1,25(OH)2D. In conclusion, topically applied 1,25(OH)2D suppressed the efferent phase of a biphasic cutaneous ear swelling response through mechanism(s) that may be dependent on mast cells and TReg cells; however, the role of IL-9 in mediating these responses is uncertain. More studies are needed to further characterise the mechanisms by which topical 1,25(OH)2D modulates cell-mediated immune responses central to its suppressive effects upon contact dermatitis. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

AB - Topical application of biologically active vitamin D [1,25-dihydroxyvitamin D (1,25(OH)2D)], or low-calcemic analogues, curb skin inflammation through mechanisms that involve migratory dendritic cells (DCs) and regulatory T (TReg) cells. 1,25(OH)2D also promotes immunoregulation by mast cells, and inhibits the development of T helper type-9 (Th9) cells that secrete interleukin-9 (IL-9). Here, we investigated the ability of topical 1,25(OH)2D to suppress contact dermatitis through an IL-9-dependent process, examining mast cells and IL-9-secreting T cells. Contact dermatitis was modelled in adult BALB/c female mice by initiating a “biphasic ear swelling response” following a single application of 2,4-dinitrofluorobenzene (DNFB). Topical 1,25(OH)2D (125 ng) applied to ear pinnae prior to (but not after) DNFB sensitisation suppressed the efferent phase of the ear swelling response. This dose of 1,25(OH)2D did not cause hypercalcemia. At the peak of the efferent ear swelling response, proportions of TReg (CD3 + Foxp3+) cells and numbers of mast cells were increased in ear skin of 1,25(OH)2D-treated mice. Topical 1,25(OH)2D increased the proportion of Foxp3 + IL-9 + TReg cells and the capacity of TReg cells to secrete IL-9 ex vivo. However, the proportion of the IL-9 + cells of the total TReg cell population was small (< 1%), and the amount of IL-9 secreted by TReg cells from mice treated with IL-9 was low (< 50 pg/ml). Furthermore, injection of anti-IL-9 neutralising antibody (100 µg, intraperitoneally) prior to sensitisation did not significantly reverse the suppressive effects of 1,25(OH)2D. In conclusion, topically applied 1,25(OH)2D suppressed the efferent phase of a biphasic cutaneous ear swelling response through mechanism(s) that may be dependent on mast cells and TReg cells; however, the role of IL-9 in mediating these responses is uncertain. More studies are needed to further characterise the mechanisms by which topical 1,25(OH)2D modulates cell-mediated immune responses central to its suppressive effects upon contact dermatitis. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

UR - https://www.ncbi.nlm.nih.gov/pubmed/29392411

U2 - 10.1007/s00403-018-1814-z

DO - 10.1007/s00403-018-1814-z

M3 - Article

VL - 310

SP - 221

EP - 230

JO - Archives of Dermatological Research

JF - Archives of Dermatological Research

SN - 0340-3696

IS - 3

ER -