TY - JOUR
T1 - Investigating the effect of cochlear implant usage metrics on cortical auditory-evoked potential responses in adult recipients post-implantation
AU - Bogdanov, Caris
AU - Goulios, Helen
AU - Mulders, Wilhelmina H.A.M.
AU - Tavora-Vieira, Dayse
N1 - Publisher Copyright:
Copyright © 2024 Bogdanov, Goulios, Mulders and Tavora-Vieira.
PY - 2024/11/20
Y1 - 2024/11/20
N2 - Introduction: This study examines the effect of cochlear implant (CI) device usage metrics on post-operative outcomes in unilateral CI recipients. The primary objective is to investigate the relationship between CI usage frequency (average daily CI use) and duration (total years of CI use) on electrically evoked cortical auditory-evoked potential (eCAEP) response peak latency (ms) and amplitude (μV). Methods: Adult CI users (n = 41) who previously exhibited absent acoustically evoked CAEP responses participated in the study. The peak latency and amplitude of eCAEP P1-N1-P2 responses were recorded, when present for the apical, medial, and basal test electrode contacts. CI duration was defined as the number of years between the date of CI activation and date that eCAEP testing was performed. CI usage frequency was defined as the average number of hours per day of audio processor use, which was recorded using the CI programming software. Results: Overall, 27 participants (65.85%) exhibited detectable eCAEP responses across one or more electrode contacts. Among these, 18 participants (43.9%) elicited eCAEP responses at all three electrode contacts, while 7 (17.07%) showed responses at two contacts, and 2 (4.88%) at one contact. For the remaining 14 participants (34.15%), eCAEP responses were either absent or undetectable. CI usage frequency (average daily CI use [hours/day]) was captured for 32 (78%) of the participants (median 10.35 h/day, range 0.2–16 h/day). Participants with present eCAEP responses for the basal electrode (n = 14) showed significantly higher CI usage frequency (11.8 h/day, p = 0.026) compared to those with non-detectable responses (6.25 h/day). An association was found between higher CI usage frequency and reduced N1 (p = 0.002), P2 (p = 0.0037) and P1-N1 inter-peak (p = 0.015) response latency (ms). While CI duration (total CI use [years]) did not differ significantly between groups based on the presence of eCAEP responses, an association was found between greater CI duration and increased eCAEP response amplitude (μV) for the P2 (p = 0.008) and N1-P2 peak-peak (p = 0.009) response components. Discussion: Additionally, most (65.85%) participants who previously exhibited absent acoustic CAEP responses developed eCAEP responses after consistent CI use and increased CI experience. These findings may suggest a potential for cortical plasticity and adaptation with consistent CI use over time. Recognizing the impact of device usage metrics on neural responses post-implantation enhances our understanding of the importance of consistent daily CI use. Overall, these findings contribute to addressing the variability among CI users, improving post-operative outcomes and advancing the standard of personalized care in auditory rehabilitation.
AB - Introduction: This study examines the effect of cochlear implant (CI) device usage metrics on post-operative outcomes in unilateral CI recipients. The primary objective is to investigate the relationship between CI usage frequency (average daily CI use) and duration (total years of CI use) on electrically evoked cortical auditory-evoked potential (eCAEP) response peak latency (ms) and amplitude (μV). Methods: Adult CI users (n = 41) who previously exhibited absent acoustically evoked CAEP responses participated in the study. The peak latency and amplitude of eCAEP P1-N1-P2 responses were recorded, when present for the apical, medial, and basal test electrode contacts. CI duration was defined as the number of years between the date of CI activation and date that eCAEP testing was performed. CI usage frequency was defined as the average number of hours per day of audio processor use, which was recorded using the CI programming software. Results: Overall, 27 participants (65.85%) exhibited detectable eCAEP responses across one or more electrode contacts. Among these, 18 participants (43.9%) elicited eCAEP responses at all three electrode contacts, while 7 (17.07%) showed responses at two contacts, and 2 (4.88%) at one contact. For the remaining 14 participants (34.15%), eCAEP responses were either absent or undetectable. CI usage frequency (average daily CI use [hours/day]) was captured for 32 (78%) of the participants (median 10.35 h/day, range 0.2–16 h/day). Participants with present eCAEP responses for the basal electrode (n = 14) showed significantly higher CI usage frequency (11.8 h/day, p = 0.026) compared to those with non-detectable responses (6.25 h/day). An association was found between higher CI usage frequency and reduced N1 (p = 0.002), P2 (p = 0.0037) and P1-N1 inter-peak (p = 0.015) response latency (ms). While CI duration (total CI use [years]) did not differ significantly between groups based on the presence of eCAEP responses, an association was found between greater CI duration and increased eCAEP response amplitude (μV) for the P2 (p = 0.008) and N1-P2 peak-peak (p = 0.009) response components. Discussion: Additionally, most (65.85%) participants who previously exhibited absent acoustic CAEP responses developed eCAEP responses after consistent CI use and increased CI experience. These findings may suggest a potential for cortical plasticity and adaptation with consistent CI use over time. Recognizing the impact of device usage metrics on neural responses post-implantation enhances our understanding of the importance of consistent daily CI use. Overall, these findings contribute to addressing the variability among CI users, improving post-operative outcomes and advancing the standard of personalized care in auditory rehabilitation.
KW - cochlear implant fitting
KW - cortical auditory-evoked potentials
KW - objective measures
KW - P1-N1-P2 complex
KW - personalized hearing rehabilitation
KW - sensorineural hearing loss
UR - http://www.scopus.com/inward/record.url?scp=85211004769&partnerID=8YFLogxK
U2 - 10.3389/fnins.2024.1453274
DO - 10.3389/fnins.2024.1453274
M3 - Article
C2 - 39640296
AN - SCOPUS:85211004769
SN - 1662-4548
VL - 18
JO - Frontiers in Neuroscience
JF - Frontiers in Neuroscience
M1 - 1453274
ER -