Intraluminal pressure oscillation enhances subsequent airway contraction in isolated bronchial segments

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

A period of deep inspiration in humans has been shown to attenuate subsequent bronchoconstriction, a phenomenon termed bronchoprotection. The bronchoprotective effect of deep inspiration may be caused though a depression in the force production of airway smooth muscle (ASM). We determined the response of whole airway segments and isolated ASM to a period of cyclic stretches. Isovolumetric contraction to electrical field stimulation (EFS) was assessed in porcine bronchial segments before and after intraluminal pressure oscillation from 5 to 25 cmH(2)O for 10 min at 0.5 Hz. Morphometry showed that this pressure oscillation stretched ASM length by 21%. After pressure oscillation, the response to EFS was not reduced but instead was modestly enhanced (P < 0.01). Airway responses to EFS returned to preoscillation levels 10 min after the end of oscillation. The increase in EFS response after pressure oscillation was not altered by the addition of indomethacin. In a separate experiment, we assessed isometric force in isolated ASM strips before and after length oscillation. The amplitude, frequency, and duration of length oscillation were similar to those induced in bronchial segments. In contrast to bronchial segments, length oscillation of ASM produced a significant depression in isometric force induced by EFS (P < 0.01). These results suggest that the response of ASM to length oscillation is modified by the airway wall. They also suggest that the phenomenon of bronchoprotection reported in some in vivo studies may not be an intrinsic property of the airway.
Original languageEnglish
Pages (from-to)1161-1165
JournalJournal of Applied Physiology
Volume96
Issue number3
DOIs
Publication statusPublished - 2004

Fingerprint

Dive into the research topics of 'Intraluminal pressure oscillation enhances subsequent airway contraction in isolated bronchial segments'. Together they form a unique fingerprint.

Cite this