Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms

    Research output: Contribution to journalArticle

    19 Citations (Scopus)

    Abstract

    The interactive effects of three levels of N (mM) (low 0.36, medium 2.1 and high 6.4) and two levels of P (mM) (low 0.10 and high 0.48) on growth and resource allocation of Canna indica Linn. were studied in wetland microcosms. After 91 days of plant growth, there was a significant interactive effect of N and P on plant growth, but not on resource allocation (except for allocation of N to leaves and allocation of P to the stems). The plant growth positively responded to the relatively higher nutrient availability (taller plants with more stems, leaves and flowers), but the growth performance was not significantly different between the medium N-low P and high N-low P treatments. At high P, the total biomass in the high N was about 51% higher than that in the medium N and about 348% higher than that in the low N. The growth performance was related to the physiological responses. The photochemical efficiency (Fv/Fm) increased from 0.843 to 0.855 with an increase in N additions. The photosynthetic rate increased from 13 to 16 μmol m−2 s−1 in the low P levels and from 14 to 20 μmol m−2 s−1 in the high P levels with an increase in N applications, but significant difference was only between the low and medium N levels, regardless of the P levels. The tissue concentrations of N increased with an increase in N applications and decreased with an increase in P additions, whereas reverse was true for tissue concentrations of P. The highest concentrations of N and P in leaves were 30.8 g N kg−1 in the high N-low P treatment and 4.9 g P kg−1 in the low N-high P treatment. The percent biomass allocation to aboveground tissues in the high N was nearly twice that in the low N treatments. The N allocation to aboveground tissues was slightly larger in high N than in low N treatments, whereas the P allocation to aboveground tissues increased with an increase in the N addition. Although some patterns of biomass allocation were similar to those of nutrient allocation, they did not totally reflect the nutrient allocation. These results imply that in order to enhance the treatment performance, appropriately high nutrient availability of N and P are required to stimulate the growth of C. indica in constructed wetlands.
    Original languageEnglish
    Pages (from-to)317-323
    JournalAquatic Botany
    Volume89
    Issue number3
    DOIs
    Publication statusPublished - 2008

    Fingerprint Dive into the research topics of 'Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms'. Together they form a unique fingerprint.

    Cite this