TY - JOUR
T1 - Inhibition mechanisms of biochar-derived dissolved organic matter to triclosan photodegradation
T2 - A remarkable role of aliphatics
AU - Wang, Lin
AU - Feng, Jing
AU - Chen, Quan
AU - Jiang, Hao
AU - Zhao, Jing
AU - Chang, Zhaofeng
AU - He, Xinhua
AU - Li, Fangfang
AU - Pan, Bo
PY - 2024/2/1
Y1 - 2024/2/1
N2 - Endocrine disrupting chemicals like triclosan (TCS) have been thought to be an emergent environmental pollutant. The ubiquitous dissolved organic matter (DOM) is able to interrelate with TCS and hamper its phototransformation. However, how the components in DOM can inhibit the photodegradation of DOM/TCS complex is largely unknown. Herein, we discovered that TCS photodegradation with biochar-derived DOM (BDOM) was interfered by both binding affinity and reactive oxygen species (ROS) productivity. BDOM can not only stimulate TCS photodegradation by producing ROS, but also inhibit the removal of TCS through the interactions between BDOMs and TCS. The quantification of BDOM's impact on TCS photodegradation revealed that BDOM hampered TCS removal with the proportion of-7.95 to-11.24% at pH 8.5, but strengthened it to 13.20% at pH 7.0. Binding process was more easily to inhibit TCS photodegradation in molecular form, while anionic TCS photodegradation was dominated by ROS productivity. Different inhibition mechanisms were involved in TCS photodegradation depending on the components of BDOMs. The hydroxyls and aromatic carbonyls might have hindered the attack of ROS on the phenolic hydroxyl of TCS via hydrogen bond interaction or 7C-7C electron donor -acceptor interaction. Through hydrophobic interaction, the mobile aliphatics could greatly shield TCS to prevent ROS attack by wrapping or twining TCS, playing a significant role in inhibiting TCS removal. Results from this present study can afford a new viewpoint in elucidating the function of BDOMs in the phototransformation of organics and decrease the spread of antibiotic resistance genes.
AB - Endocrine disrupting chemicals like triclosan (TCS) have been thought to be an emergent environmental pollutant. The ubiquitous dissolved organic matter (DOM) is able to interrelate with TCS and hamper its phototransformation. However, how the components in DOM can inhibit the photodegradation of DOM/TCS complex is largely unknown. Herein, we discovered that TCS photodegradation with biochar-derived DOM (BDOM) was interfered by both binding affinity and reactive oxygen species (ROS) productivity. BDOM can not only stimulate TCS photodegradation by producing ROS, but also inhibit the removal of TCS through the interactions between BDOMs and TCS. The quantification of BDOM's impact on TCS photodegradation revealed that BDOM hampered TCS removal with the proportion of-7.95 to-11.24% at pH 8.5, but strengthened it to 13.20% at pH 7.0. Binding process was more easily to inhibit TCS photodegradation in molecular form, while anionic TCS photodegradation was dominated by ROS productivity. Different inhibition mechanisms were involved in TCS photodegradation depending on the components of BDOMs. The hydroxyls and aromatic carbonyls might have hindered the attack of ROS on the phenolic hydroxyl of TCS via hydrogen bond interaction or 7C-7C electron donor -acceptor interaction. Through hydrophobic interaction, the mobile aliphatics could greatly shield TCS to prevent ROS attack by wrapping or twining TCS, playing a significant role in inhibiting TCS removal. Results from this present study can afford a new viewpoint in elucidating the function of BDOMs in the phototransformation of organics and decrease the spread of antibiotic resistance genes.
KW - Antibiotics
KW - Photochemical availability Inhibition
KW - Reactive oxygen species
KW - Shelter
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=uwapure5-25&SrcAuth=WosAPI&KeyUT=WOS:001141346800001&DestLinkType=FullRecord&DestApp=WOS
U2 - 10.1016/j.envpol.2023.123056
DO - 10.1016/j.envpol.2023.123056
M3 - Article
C2 - 38040184
SN - 0269-7491
VL - 342
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 123056
ER -