Influence of stream-floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment

Jason Fellman, Neil Pettit, Jesse Kalic, Pauline Grierson

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We measured nutrients and dissolved organic matter (DOM) in surface water and floodplain sediments to evaluate biogeochemical linkages between streams and floodplains in 3 streams of increasing size in a tropical catchment in northwestern Australia. We hypothesized that stream-floodplain biogeochemical connectivity, measured as similar DOM concentrations and spectroscopic properties of streamwater and floodplain sediment leachate, would decrease with increasing stream size. We expected decreasing connectivity to shift support of aquatic foodweb structure from mainly allochthonous C in small streams to algal C in larger streams. Streamwater and sediment leachate concentrations of NH4-N, NO3-N, soluble reactive P, and DOM varied several-fold across the 3 sites but showed no strong pattern in stream-floodplain connectivity with increasing stream size. Fluorescence index, specific ultraviolet absorbance, and δ13C-dissolved organic C (DOC) for stream water and sediment leachate were most similar to each other at the mid-size Adcock River, indicating tight river-floodplain biogeochemical connectivity via input of allochthonous DOM and NH4-N to stream water. δ13C and δ15N signatures for key producers and consumers for all 3 streams showed that invertebrate consumers probably were supported by a range of in-stream (e.g., benthic and filamentous algae) and floodplain (allochthonous leaf litter) sources, whereas fish strongly reflected δ13C- enriched sources (e.g., benthic algae). Allochthonous C was probably only a minor energy source for metazoa, but we propose that river-floodplain biogeochemical linkages may be important for other aspects of ecosystem productivity, such as input of inorganic nutrients to support in-stream primary production. Terrestrial-aquatic biogeochemical linkages may be critical but poorly quantified components of river-floodplain ecosystems. © 2013 by The Society for Freshwater Science.
Original languageEnglish
Pages (from-to)217-229
JournalFreshwater Science
Volume32
Issue number1
DOIs
Publication statusPublished - 2013

Fingerprint

floodplains
floodplain
catchment
dissolved organic matter
algae
connectivity
leachates
leachate
sediments
streamwater
rivers
river
sediment
Animalia
filamentous alga
ecosystems
nutrient
ecosystem
nutrients
leaf litter

Cite this

@article{a5c7c8ea8d504fe49b449c8b8abe610b,
title = "Influence of stream-floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment",
abstract = "We measured nutrients and dissolved organic matter (DOM) in surface water and floodplain sediments to evaluate biogeochemical linkages between streams and floodplains in 3 streams of increasing size in a tropical catchment in northwestern Australia. We hypothesized that stream-floodplain biogeochemical connectivity, measured as similar DOM concentrations and spectroscopic properties of streamwater and floodplain sediment leachate, would decrease with increasing stream size. We expected decreasing connectivity to shift support of aquatic foodweb structure from mainly allochthonous C in small streams to algal C in larger streams. Streamwater and sediment leachate concentrations of NH4-N, NO3-N, soluble reactive P, and DOM varied several-fold across the 3 sites but showed no strong pattern in stream-floodplain connectivity with increasing stream size. Fluorescence index, specific ultraviolet absorbance, and δ13C-dissolved organic C (DOC) for stream water and sediment leachate were most similar to each other at the mid-size Adcock River, indicating tight river-floodplain biogeochemical connectivity via input of allochthonous DOM and NH4-N to stream water. δ13C and δ15N signatures for key producers and consumers for all 3 streams showed that invertebrate consumers probably were supported by a range of in-stream (e.g., benthic and filamentous algae) and floodplain (allochthonous leaf litter) sources, whereas fish strongly reflected δ13C- enriched sources (e.g., benthic algae). Allochthonous C was probably only a minor energy source for metazoa, but we propose that river-floodplain biogeochemical linkages may be important for other aspects of ecosystem productivity, such as input of inorganic nutrients to support in-stream primary production. Terrestrial-aquatic biogeochemical linkages may be critical but poorly quantified components of river-floodplain ecosystems. {\circledC} 2013 by The Society for Freshwater Science.",
author = "Jason Fellman and Neil Pettit and Jesse Kalic and Pauline Grierson",
year = "2013",
doi = "10.1899/11-117.1",
language = "English",
volume = "32",
pages = "217--229",
journal = "Freshwater Science",
issn = "2161-9565",
publisher = "The Society for Freshwater Science",
number = "1",

}

TY - JOUR

T1 - Influence of stream-floodplain biogeochemical linkages on aquatic foodweb structure along a gradient of stream size in a tropical catchment

AU - Fellman, Jason

AU - Pettit, Neil

AU - Kalic, Jesse

AU - Grierson, Pauline

PY - 2013

Y1 - 2013

N2 - We measured nutrients and dissolved organic matter (DOM) in surface water and floodplain sediments to evaluate biogeochemical linkages between streams and floodplains in 3 streams of increasing size in a tropical catchment in northwestern Australia. We hypothesized that stream-floodplain biogeochemical connectivity, measured as similar DOM concentrations and spectroscopic properties of streamwater and floodplain sediment leachate, would decrease with increasing stream size. We expected decreasing connectivity to shift support of aquatic foodweb structure from mainly allochthonous C in small streams to algal C in larger streams. Streamwater and sediment leachate concentrations of NH4-N, NO3-N, soluble reactive P, and DOM varied several-fold across the 3 sites but showed no strong pattern in stream-floodplain connectivity with increasing stream size. Fluorescence index, specific ultraviolet absorbance, and δ13C-dissolved organic C (DOC) for stream water and sediment leachate were most similar to each other at the mid-size Adcock River, indicating tight river-floodplain biogeochemical connectivity via input of allochthonous DOM and NH4-N to stream water. δ13C and δ15N signatures for key producers and consumers for all 3 streams showed that invertebrate consumers probably were supported by a range of in-stream (e.g., benthic and filamentous algae) and floodplain (allochthonous leaf litter) sources, whereas fish strongly reflected δ13C- enriched sources (e.g., benthic algae). Allochthonous C was probably only a minor energy source for metazoa, but we propose that river-floodplain biogeochemical linkages may be important for other aspects of ecosystem productivity, such as input of inorganic nutrients to support in-stream primary production. Terrestrial-aquatic biogeochemical linkages may be critical but poorly quantified components of river-floodplain ecosystems. © 2013 by The Society for Freshwater Science.

AB - We measured nutrients and dissolved organic matter (DOM) in surface water and floodplain sediments to evaluate biogeochemical linkages between streams and floodplains in 3 streams of increasing size in a tropical catchment in northwestern Australia. We hypothesized that stream-floodplain biogeochemical connectivity, measured as similar DOM concentrations and spectroscopic properties of streamwater and floodplain sediment leachate, would decrease with increasing stream size. We expected decreasing connectivity to shift support of aquatic foodweb structure from mainly allochthonous C in small streams to algal C in larger streams. Streamwater and sediment leachate concentrations of NH4-N, NO3-N, soluble reactive P, and DOM varied several-fold across the 3 sites but showed no strong pattern in stream-floodplain connectivity with increasing stream size. Fluorescence index, specific ultraviolet absorbance, and δ13C-dissolved organic C (DOC) for stream water and sediment leachate were most similar to each other at the mid-size Adcock River, indicating tight river-floodplain biogeochemical connectivity via input of allochthonous DOM and NH4-N to stream water. δ13C and δ15N signatures for key producers and consumers for all 3 streams showed that invertebrate consumers probably were supported by a range of in-stream (e.g., benthic and filamentous algae) and floodplain (allochthonous leaf litter) sources, whereas fish strongly reflected δ13C- enriched sources (e.g., benthic algae). Allochthonous C was probably only a minor energy source for metazoa, but we propose that river-floodplain biogeochemical linkages may be important for other aspects of ecosystem productivity, such as input of inorganic nutrients to support in-stream primary production. Terrestrial-aquatic biogeochemical linkages may be critical but poorly quantified components of river-floodplain ecosystems. © 2013 by The Society for Freshwater Science.

U2 - 10.1899/11-117.1

DO - 10.1899/11-117.1

M3 - Article

VL - 32

SP - 217

EP - 229

JO - Freshwater Science

JF - Freshwater Science

SN - 2161-9565

IS - 1

ER -