Infection process of Phoma koolunga on stem and leaf tissue of resistant and susceptible field pea (Pisum sativum)

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778-BSR-701 (resistant) and 06P830-(F5)-BSR-5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post-inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.

Original languageEnglish
Pages (from-to)212-222
Number of pages11
JournalPlant Pathology
Volume66
Issue number2
Early online date1 Jul 2016
DOIs
Publication statusPublished - 1 Feb 2017

Fingerprint

Phoma
Fungal Spores
Peas
Pisum sativum
peas
conidia
Genotype
stems
Infection
appressoria
infection
genotype
leaves
germ tube
stomata
tissues
Electron Scanning Microscopy
resistance mechanisms
scanning electron microscopy
Light

Cite this

@article{6833d8d2332c4ea8a33e0ceca7ec520a,
title = "Infection process of Phoma koolunga on stem and leaf tissue of resistant and susceptible field pea (Pisum sativum)",
abstract = "This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778-BSR-701 (resistant) and 06P830-(F5)-BSR-5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post-inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.",
keywords = "appressorium formation, infection process, pea black spot, resistance, stomatal penetration",
author = "Tran, {H. S.} and You, {M. P.} and Khan, {T. N.} and Barbetti, {M. J.}",
year = "2017",
month = "2",
day = "1",
doi = "10.1111/ppa.12562",
language = "English",
volume = "66",
pages = "212--222",
journal = "Plant Pathology",
issn = "0032-0862",
publisher = "John Wiley & Sons",
number = "2",

}

TY - JOUR

T1 - Infection process of Phoma koolunga on stem and leaf tissue of resistant and susceptible field pea (Pisum sativum)

AU - Tran, H. S.

AU - You, M. P.

AU - Khan, T. N.

AU - Barbetti, M. J.

PY - 2017/2/1

Y1 - 2017/2/1

N2 - This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778-BSR-701 (resistant) and 06P830-(F5)-BSR-5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post-inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.

AB - This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778-BSR-701 (resistant) and 06P830-(F5)-BSR-5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post-inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.

KW - appressorium formation

KW - infection process

KW - pea black spot

KW - resistance

KW - stomatal penetration

UR - http://www.scopus.com/inward/record.url?scp=84978062984&partnerID=8YFLogxK

U2 - 10.1111/ppa.12562

DO - 10.1111/ppa.12562

M3 - Article

VL - 66

SP - 212

EP - 222

JO - Plant Pathology

JF - Plant Pathology

SN - 0032-0862

IS - 2

ER -