Inertial dynamics of an interface with interfacial mass flux: Stability and flow fields' structure, inertial stabilization mechanism, degeneracy of Landau's solution, effect of energy fluctuations, and chemistry-induced instabilities

Daniil V. Ilyin, William A. Goddard, Snezhana I. Abarzhi

Research output: Contribution to journalArticle

Abstract

This work focuses on the long-standing problem of inertial dynamics of an interface with interfacial mass flux and reports new mechanisms for the interface stabilization and destabilization. The interface is a phase boundary separating fluids of different densities and having interfacial mass flux. To analyze the interface dynamics from a far field, we develop and apply the general matrix method to rigorously solve the boundary value problem involving the governing equations in the fluid bulk and the boundary conditions at the interface and at the outside boundaries of the domain. We find the fundamental solutions for the linearized system of equations and analyze the interplay of interface stability with flow fields' structure by directly linking rigorous mathematical attributes to physical observables. We find that the interface is stable when the dynamics conserves the fluxes of mass, momentum, and energy; the stabilization is due to an inertial mechanism causing small oscillations of the interface velocity. In the classic Landau's dynamics, the postulate of perfect constancy of the interface velocity leads to the development of Landau-Darrieus instability. This destabilization is also linked to the imbalance of the perturbed energy at the interface. The classic Landau's solution is found to have degeneracy; lifting of the degeneracy may lead to singularity and self-similar dynamics. Our results compare well with traditional theories of combustion and propose new experiments to study the dynamics of the interface and the flow fields in combustible systems. We further conduct reactive molecular dynamics simulations to elucidate the complexity of chemical processes, to study the destabilizing effect of energy fluctuations on the interface stability, and to illustrate the chemistry-induced instabilities. In summary, we identify the extreme sensitivity of the interface dynamics to the interfacial boundary conditions, including the formal properties of fundamental solutions and the qualitative and quantitative properties of the flow fields. This provides new opportunities for studies, diagnostics, and control of multiphase flows in a broad range of processes in nature and technology.

Original languageEnglish
Article number0013165
JournalPhysics of Fluids
Volume32
Issue number8
DOIs
Publication statusPublished - 1 Aug 2020

Fingerprint Dive into the research topics of 'Inertial dynamics of an interface with interfacial mass flux: Stability and flow fields' structure, inertial stabilization mechanism, degeneracy of Landau's solution, effect of energy fluctuations, and chemistry-induced instabilities'. Together they form a unique fingerprint.

  • Cite this