InducT-GCN: Inductive Graph Convolutional Networks for Text Classification

Kunze Wang, Soyeon Caren Han, Josiah Poon

Research output: Chapter in Book/Conference paperConference paperpeer-review

32 Citations (Scopus)

Abstract

Text classification aims to assign labels to textual units by making use of global information. Recent studies have applied graph neural network (GNN) to capture the global word co-occurrence in a corpus. Existing approaches require that all the nodes (training and test) in a graph are present during training, which are transductive and do not naturally generalise to unseen nodes. To make those models inductive, they use extra resources, like pretrained word embedding. However, high-quality resource is not always available and hard to train. Under the extreme settings with no extra resource and limited amount of training set, can we still learn an inductive graph-based text classification model? In this paper, we introduce a novel inductive graph-based text classification framework, InducT-GCN (InducTive Graph Convolutional Networks for Text classification). Compared to transductive models that require test documents in training, we construct a graph based on the statistics of training documents only and represent document vectors with a weighted sum of word vectors. We then conduct one-directional GCN propagation during testing. Across five text classification benchmarks, our InducT-GCN outperformed state-of-the-art methods that are either transductive in nature or pre-trained additional resources. We also conducted scalability testing by gradually increasing the data size and revealed that our InducT-GCN can reduce the time and space complexity. The code is available on: https://github.com/usydnlp/InductTGCN.

Original languageEnglish
Title of host publication2022 26th International Conference on Pattern Recognition, ICPR 2022
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages1243-1249
Number of pages7
ISBN (Electronic)9781665490627
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event26th International Conference on Pattern Recognition, ICPR 2022 - Montreal, Canada
Duration: 21 Aug 202225 Aug 2022

Publication series

NameProceedings - International Conference on Pattern Recognition
Volume2022-August
ISSN (Print)1051-4651

Conference

Conference26th International Conference on Pattern Recognition, ICPR 2022
Country/TerritoryCanada
CityMontreal
Period21/08/2225/08/22

Fingerprint

Dive into the research topics of 'InducT-GCN: Inductive Graph Convolutional Networks for Text Classification'. Together they form a unique fingerprint.

Cite this