TY - JOUR
T1 - Inactivation of vitamin D2 metabolites by human CYP24A1
AU - Li, Lei
AU - Tuckey, Robert C.
PY - 2023/10
Y1 - 2023/10
N2 - Vitamin D is found in two forms in humans, D3 produced in the skin and D2 solely from the diet. Both 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) are oxidised and inactivated by CYP24A1, a tightly regulated mitochondrial enzyme that controls serum levels of these secosteroids. The pathways of oxidation of 25(OH)D2 and 1,25(OH)2D2, particularly 25(OH)D2, by human CYP24A1 are not well characterized. The aim of this study was to further elucidate these pathways, and to compare the kinetics of metabolism of 25(OH)D2 and 1,25(OH)2D2 with their vitamin D3 counterparts. We used expressed and partially purified human CYP24A1 with substrates dissolved in the membrane of phospholipid vesicles, to mimic the inner mitochondrial membrane. We found that the major pathways for side chain oxidation of 25(OH)D2 and 1,25(OH)2D2 were identical and that predominant intermediates of 25(OH)D2 metabolism could be converted to the corresponding intermediates in the pathway of 1,25(OH)2D2 oxidation by 1α-hydroxylation by CYP27B1. The initial steps in the CYP24A1-mediated oxidation involved hydroxylation at the C24R position, and another unknown position where the alcohol was oxidised to an aldehyde. The 24R-hydroxylation was followed by hydroxylation at C26 or C28, or cleavage between C24 and C25 to produce the 24-oxo-25,26,27-trinor derivative. All of these products were further oxidised, with 24-oxo-25,26,27-trinor-1(OH)D2 giving a product tentatively identified as 24-oxo-25,26,27-trinor-1,28(OH)2D2. The catalytic efficiency (kcat/Km) of CYP24A1 for initial 25(OH)D2 hydroxylation was similar to that for 25(OH)D3, indicating that they have similar rates of inactivation at low substrate concentrations, supporting that vitamins D2 and D3 are equally effective in maintaining serum 25(OH)D concentrations. In contrast, the kcat/Km value for 1,25(OH)2D3 was almost double that for 1,25(OH)2D2 indicating a lower rate of inactivation of 1,25(OH)2D2 at a low substrate concentration, suggesting that it has increased metabolic stability in vivo.
AB - Vitamin D is found in two forms in humans, D3 produced in the skin and D2 solely from the diet. Both 25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) are oxidised and inactivated by CYP24A1, a tightly regulated mitochondrial enzyme that controls serum levels of these secosteroids. The pathways of oxidation of 25(OH)D2 and 1,25(OH)2D2, particularly 25(OH)D2, by human CYP24A1 are not well characterized. The aim of this study was to further elucidate these pathways, and to compare the kinetics of metabolism of 25(OH)D2 and 1,25(OH)2D2 with their vitamin D3 counterparts. We used expressed and partially purified human CYP24A1 with substrates dissolved in the membrane of phospholipid vesicles, to mimic the inner mitochondrial membrane. We found that the major pathways for side chain oxidation of 25(OH)D2 and 1,25(OH)2D2 were identical and that predominant intermediates of 25(OH)D2 metabolism could be converted to the corresponding intermediates in the pathway of 1,25(OH)2D2 oxidation by 1α-hydroxylation by CYP27B1. The initial steps in the CYP24A1-mediated oxidation involved hydroxylation at the C24R position, and another unknown position where the alcohol was oxidised to an aldehyde. The 24R-hydroxylation was followed by hydroxylation at C26 or C28, or cleavage between C24 and C25 to produce the 24-oxo-25,26,27-trinor derivative. All of these products were further oxidised, with 24-oxo-25,26,27-trinor-1(OH)D2 giving a product tentatively identified as 24-oxo-25,26,27-trinor-1,28(OH)2D2. The catalytic efficiency (kcat/Km) of CYP24A1 for initial 25(OH)D2 hydroxylation was similar to that for 25(OH)D3, indicating that they have similar rates of inactivation at low substrate concentrations, supporting that vitamins D2 and D3 are equally effective in maintaining serum 25(OH)D concentrations. In contrast, the kcat/Km value for 1,25(OH)2D3 was almost double that for 1,25(OH)2D2 indicating a lower rate of inactivation of 1,25(OH)2D2 at a low substrate concentration, suggesting that it has increased metabolic stability in vivo.
KW - 1α,25-dihydroxyvitamin D2
KW - 25-hydroxyvitamin D2
KW - CYP24A1
KW - Hydroxylation
KW - Oxidation
KW - Vitamin D2
UR - http://www.scopus.com/inward/record.url?scp=85166231335&partnerID=8YFLogxK
U2 - 10.1016/j.jsbmb.2023.106368
DO - 10.1016/j.jsbmb.2023.106368
M3 - Article
C2 - 37495192
AN - SCOPUS:85166231335
SN - 0960-0760
VL - 233
JO - Journal of Steroid Biochemistry and Molecular Biology
JF - Journal of Steroid Biochemistry and Molecular Biology
M1 - 106368
ER -