Abstract
© Springer International Publishing Switzerland 2014. Repetitive brief episodes of soft-tissue collapse within the upper airway during sleep characterize obstructive sleep apnea (OSA), an extremely common and disabling disorder. Failure to maintain the patency of the upper airway is caused by the combination of sleep-related loss of compensatory dilator muscle activity and aerodynamic forces promoting closure. The prediction of soft-tissue movement in patientspecific airway 3D mechanical models is emerging as a useful contribution to clinical understanding and decision-making. Such modeling requires reliable estimations of the wall pressure forces. While nasal obstruction has been recognized as a risk factor of OSA, the need to include the nasal cavity in upper-airway models for OSA applications requires consideration, as it is most often omitted because of its complex shape. The hypothesis underpinning this work is that adequate boundary conditions and simple artificial geometric extensions can reproduce the essential effects of the nasal cavity on the pharyngeal flow field and thereby reduce the overall complexity and computational cost of accurate simulations of upperairway dynamics.
Original language | English |
---|---|
Title of host publication | IFMBE Proceedings |
Editors | James Goh |
Place of Publication | Singapore |
Publisher | Springer |
Pages | 335-338 |
Volume | 43 |
ISBN (Print) | 9783319029122 |
DOIs | |
Publication status | Published - 2014 |
Event | 15th International Conference on Biomedical Engineering - Singapore, Singapore Duration: 4 Dec 2013 → 7 Dec 2013 Conference number: 15 |
Conference
Conference | 15th International Conference on Biomedical Engineering |
---|---|
Abbreviated title | ICBME 2013 |
Country/Territory | Singapore |
City | Singapore |
Period | 4/12/13 → 7/12/13 |