TY - JOUR
T1 - Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers
AU - Coussement, Kristof
AU - Poel, Dirk Van den
PY - 2009/4
Y1 - 2009/4
N2 - Predicting customer churn with the purpose of retaining customers is a hot topic in academy as well as in today's business environment. Targeting the right customers for a specific retention campaign carries a high priority. This study focuses on two aspects in which churn prediction models could be improved by (i) relying on customer information type diversity and (ii) choosing the best performing classification technique. (i) With the upcoming interest in new media (e.g. blogs, emails, ...), client/company interactions are facilitated. Consequently, new types of information are available which generate new opportunities to increase the prediction power of a churn model. This study contributes to the literature by finding evidence that adding emotions expressed in client/company emails increases the predictive performance of an extended RFM churn model. As a substantive contribution, an in-depth study of the impact of the emotionality indicators on churn behavior is done. (ii) This study compares three classification techniques - i.e. Logistic Regression, Support Vector Machines and Random Forests - to distinguish churners from non-churners. This paper shows that Random Forests is a viable opportunity to improve predictive performance compared to Support Vector Machines and Logistic Regression which both exhibit an equal performance.
AB - Predicting customer churn with the purpose of retaining customers is a hot topic in academy as well as in today's business environment. Targeting the right customers for a specific retention campaign carries a high priority. This study focuses on two aspects in which churn prediction models could be improved by (i) relying on customer information type diversity and (ii) choosing the best performing classification technique. (i) With the upcoming interest in new media (e.g. blogs, emails, ...), client/company interactions are facilitated. Consequently, new types of information are available which generate new opportunities to increase the prediction power of a churn model. This study contributes to the literature by finding evidence that adding emotions expressed in client/company emails increases the predictive performance of an extended RFM churn model. As a substantive contribution, an in-depth study of the impact of the emotionality indicators on churn behavior is done. (ii) This study compares three classification techniques - i.e. Logistic Regression, Support Vector Machines and Random Forests - to distinguish churners from non-churners. This paper shows that Random Forests is a viable opportunity to improve predictive performance compared to Support Vector Machines and Logistic Regression which both exhibit an equal performance.
KW - Call center email
KW - Churn prediction
KW - Classification
KW - Random Forests
KW - Subscription services
KW - Support Vector Machines
UR - http://www.scopus.com/inward/record.url?scp=58349110712&partnerID=8YFLogxK
U2 - 10.1016/j.eswa.2008.07.021
DO - 10.1016/j.eswa.2008.07.021
M3 - Article
AN - SCOPUS:58349110712
VL - 36
SP - 6127
EP - 6134
JO - Expert Systems with Applications
JF - Expert Systems with Applications
SN - 0957-4174
IS - 3 PART 2
ER -