TY - JOUR
T1 - Improved hMSC functions on titanium coatings by type I collagen immobilization
AU - Ao, H.
AU - Xie, Y.
AU - Tan, H.
AU - Wu, X.
AU - Liu, Guangwang
AU - Qin, A.
AU - Zheng, X.
AU - Tang, T.
PY - 2014
Y1 - 2014
N2 - In this study, type I collagen was fixed onto plasma-sprayed porous titanium coatings by either adsorptive immobilization or covalent immobilization. Surface characterization by scanning electron microscopy (SEM), diffuse reflectance Fourier transform infrared spectroscopy (DR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the biochemical modification of the titanium coatings. The immobilizing effects of type I collagen, including variations in the amount and stability of collagen, were investigated using Sirius red staining. A greater amount of collagen was found on the covalently immobilized titanium coating, and higher stability was achieved relative to the absorptive immobilization surface. Human mesenchymal stem cells (hMSCs) were used to evaluate the cytocompatibility of the modified titanium coatings. Type I collagen immobilized on titanium coating led to enhance cell-material interactions and improved hMSC functions, such as attachment, proliferation, and differentiation. Interestingly, covalently immobilized collagen on titanium coating showed a greater capability to regulate the osteogenic activity of hMSCs than did absorbed collagen, which was explained in terms of the increased amount and higher stability of the covalently linked collagen. The type I collagen covalently immobilized titanium coatings with improved biological function may exhibit better osteointegration in clinical application. © 2013 Wiley Periodicals, Inc.
AB - In this study, type I collagen was fixed onto plasma-sprayed porous titanium coatings by either adsorptive immobilization or covalent immobilization. Surface characterization by scanning electron microscopy (SEM), diffuse reflectance Fourier transform infrared spectroscopy (DR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the biochemical modification of the titanium coatings. The immobilizing effects of type I collagen, including variations in the amount and stability of collagen, were investigated using Sirius red staining. A greater amount of collagen was found on the covalently immobilized titanium coating, and higher stability was achieved relative to the absorptive immobilization surface. Human mesenchymal stem cells (hMSCs) were used to evaluate the cytocompatibility of the modified titanium coatings. Type I collagen immobilized on titanium coating led to enhance cell-material interactions and improved hMSC functions, such as attachment, proliferation, and differentiation. Interestingly, covalently immobilized collagen on titanium coating showed a greater capability to regulate the osteogenic activity of hMSCs than did absorbed collagen, which was explained in terms of the increased amount and higher stability of the covalently linked collagen. The type I collagen covalently immobilized titanium coatings with improved biological function may exhibit better osteointegration in clinical application. © 2013 Wiley Periodicals, Inc.
U2 - 10.1002/jbm.a.34682
DO - 10.1002/jbm.a.34682
M3 - Article
C2 - 23661627
SN - 1549-3296
VL - 102
SP - 204
EP - 214
JO - Journal of Biomedical Materials Research - Part A
JF - Journal of Biomedical Materials Research - Part A
IS - 1
ER -