TY - JOUR
T1 - Impacts of Elevated CO2 and a Nitrogen Supply on the Growth of Faba Beans (Vicia faba L.) and the Nitrogen-Related Soil Bacterial Community
AU - Dong, Xingshui
AU - Lin, Hui
AU - Wang, Feng
AU - Shi, Songmei
AU - Wang, Zhihui
AU - Sharifi, Sharifullah
AU - Ma, Junwei
AU - He, Xinhua
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/9
Y1 - 2024/9
N2 - Ecosystems that experience elevated CO2 (eCO2) are crucial interfaces where intricate interactions between plants and microbes occur. This study addressed the impact of eCO2 and a N supply on faba bean (Vicia faba L.) growth and the soil microbial community in auto-controlled growth chambers. In doing so, two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/460 ppm; eCO2, 550/610 ppm) and two N supplement levels (without a N supply—N0—and 100 mg N as urea per kg of soil—N100) were applied. The results indicated that eCO2 mitigated the inhibitory effects of a N deficiency on legume photosynthesis and affected the CO2 assimilation efficiency, in addition to causing reduced nodulation. While the N addition counteracted the reductions in the N concentrations across the faba beans’ aboveground and belowground plant tissues under eCO2, the CO2 concentrations did not significantly alter the soil NH4+-N or NO3−-N responses to a N supply. Notably, under both aCO2 and eCO2, a N supply significantly increased the relative abundance of Nitrososphaeraceae and Nitrosomonadaceae, while eCO2 specifically reduced the Rhizobiaceae abundance with no significant changes under aCO2. A redundancy analysis (RDA) highlighted that the soil pH (p < 0.01) had the most important influence on the soil microbial community. Co-occurrence networks indicated that the eCO2 conditions mitigated the impact of a N supply on the reduced structural complexity of the soil microbial communities. These findings suggest that a combination of eCO2 and a N supply to crops can provide potential benefits for managing future climate change impacts on crop production.
AB - Ecosystems that experience elevated CO2 (eCO2) are crucial interfaces where intricate interactions between plants and microbes occur. This study addressed the impact of eCO2 and a N supply on faba bean (Vicia faba L.) growth and the soil microbial community in auto-controlled growth chambers. In doing so, two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/460 ppm; eCO2, 550/610 ppm) and two N supplement levels (without a N supply—N0—and 100 mg N as urea per kg of soil—N100) were applied. The results indicated that eCO2 mitigated the inhibitory effects of a N deficiency on legume photosynthesis and affected the CO2 assimilation efficiency, in addition to causing reduced nodulation. While the N addition counteracted the reductions in the N concentrations across the faba beans’ aboveground and belowground plant tissues under eCO2, the CO2 concentrations did not significantly alter the soil NH4+-N or NO3−-N responses to a N supply. Notably, under both aCO2 and eCO2, a N supply significantly increased the relative abundance of Nitrososphaeraceae and Nitrosomonadaceae, while eCO2 specifically reduced the Rhizobiaceae abundance with no significant changes under aCO2. A redundancy analysis (RDA) highlighted that the soil pH (p < 0.01) had the most important influence on the soil microbial community. Co-occurrence networks indicated that the eCO2 conditions mitigated the impact of a N supply on the reduced structural complexity of the soil microbial communities. These findings suggest that a combination of eCO2 and a N supply to crops can provide potential benefits for managing future climate change impacts on crop production.
KW - Nitrosomonadaceae
KW - Nitrososphaeraceae
KW - redundancy analysis
KW - Rhizobiaceae
KW - soil microbial community
UR - http://www.scopus.com/inward/record.url?scp=85204134492&partnerID=8YFLogxK
U2 - 10.3390/plants13172483
DO - 10.3390/plants13172483
M3 - Article
C2 - 39273967
AN - SCOPUS:85204134492
SN - 2223-7747
VL - 13
JO - Plants
JF - Plants
IS - 17
M1 - 2483
ER -