Abstract
Groundwater recharge is a complex process reflecting many interactions between climate, vegetation and soils. Climate change will impact upon groundwater recharge but it is not clear which climate variables have the greatest influence over recharge. This study used a sensitivity analysis of climate variables using a modified version of WAVES, a soil-vegetation-atmosphere-transfer model (unsaturated zone), to determine the importance of each climate variable in the change in groundwater recharge for three points in Australia. This study found that change in recharge is most sensitive to change in rainfall. Increases in temperature and changes in rainfall intensity also led to significant changes in recharge. Although not as significant as other climate variables, some changes in recharge were observed due to changes in solar radiation and carbon dioxide concentration. When these variables were altered simultaneously, changes in recharge appeared to be closely related to changes in rainfall; however, in nearly all cases, recharge was greater than would have been predicted if only rainfall had been considered. These findings have implications for how recharge is projected to change due to climate change.
Original language | English |
---|---|
Pages (from-to) | 1625-1638 |
Number of pages | 14 |
Journal | Hydrogeology Journal |
Volume | 18 |
Issue number | 7 |
DOIs | |
Publication status | Published - 29 Oct 2010 |