TY - JOUR
T1 - Impact of crop residue retention and tillage on water infiltration into a water-repellent soil
AU - Ward, Philip
AU - Roper, Margaret
AU - Jongepier, R.
AU - Micin, S.F.
PY - 2015
Y1 - 2015
N2 - © Institute of Molecular Biology, Slovak Academy of Sciences 2015. Water repellence is a condition in which soils become hydrophobic and do not readily absorb water. The condition causes problems in agricultural production relating to water availability for seed germination and plant growth. In this research we assess the impact of disturbing the soil by a single annual soil tillage (compared with no-till) and crop residue retention (compared with residue removal by burning) on the severity of water repellency, and on water infiltration during and immediately after rainfall, for 5 discrete rainfall events over an 18-month period covering two crop growing seasons. Soil tillage and crop residue removal were associated with decreased severity of water repellency. Despite this, soil tillage resulted in less infiltration of rain water, especially in the crop inter-row spaces, one hour after the commencement of rainfall, and 6 hours after the conclusion of rainfall. Where a single soil tillage was performed, soil in the inter-row spaces absorbed 19-30% of incident rainfall, compared with 58-78% in undisturbed soils. This was observed for a rainfall event 11 months after soil tillage, indicating that soil tillage has a long-lasting impact on pathways of water entry into the soil.
AB - © Institute of Molecular Biology, Slovak Academy of Sciences 2015. Water repellence is a condition in which soils become hydrophobic and do not readily absorb water. The condition causes problems in agricultural production relating to water availability for seed germination and plant growth. In this research we assess the impact of disturbing the soil by a single annual soil tillage (compared with no-till) and crop residue retention (compared with residue removal by burning) on the severity of water repellency, and on water infiltration during and immediately after rainfall, for 5 discrete rainfall events over an 18-month period covering two crop growing seasons. Soil tillage and crop residue removal were associated with decreased severity of water repellency. Despite this, soil tillage resulted in less infiltration of rain water, especially in the crop inter-row spaces, one hour after the commencement of rainfall, and 6 hours after the conclusion of rainfall. Where a single soil tillage was performed, soil in the inter-row spaces absorbed 19-30% of incident rainfall, compared with 58-78% in undisturbed soils. This was observed for a rainfall event 11 months after soil tillage, indicating that soil tillage has a long-lasting impact on pathways of water entry into the soil.
U2 - 10.1515/biolog-2015-0170
DO - 10.1515/biolog-2015-0170
M3 - Article
SN - 0006-3088
VL - 70
SP - 1480
EP - 1484
JO - Biologia (Poland)
JF - Biologia (Poland)
IS - 11
ER -