TY - JOUR
T1 - Impact of altered vena cava flow rates on right atrium flow characteristics
AU - Parker, Louis P.
AU - Marcial, Anders Svensson
AU - Brismar, Torkel B.
AU - Broman, Lars Mikael
AU - Wittberg, Lisa Prahl
N1 - Publisher Copyright:
Copyright © 2022 The Authors.
PY - 2022/5
Y1 - 2022/5
N2 - The right atrium (RA) combines the superior vena cava (SVC) and inferior vena cava (IVC) flows. Treatments like extracorporeal membrane oxygenation (ECMO) and hemodialysis by catheter alter IVC/SVC flows. Here we assess how altered IVC/SVC flow contributions impact RA flow. Four healthy volunteers were imaged with computerized tomography (CT), reconstructed and combined into a patient-averaged model. Large eddy simulations (LESs) were performed for a range of IVC/SVC flow contributions (30%–70% each, increments of 5%) and common flow metrics were recorded. Model sensitivity to reconstruction domain extent, constant/pulsatile inlets, and hematocrit was also assessed. Consistent with literature, a single vortex occupied the central RA across all flowrates with a smaller counter-rotating vortex, not previously reported, in the auricle. Vena cava flow was highly helical. RA turbulent kinetic energy (TKE; P = 0.027) and time-averaged wall shear stress (WSS; P < 0.001) increased with SVC flow. WSS was lower in the auricle (2 Pa, P < 0.001). WSS in the vena cava was equal at IVC/SVC = 65/35%. The model was highly sensitive to the reconstruction domain with cropped geometries lacking helicity in the venae cavae, altering the RA flow. The RA flow was not significantly affected by constant inlets or hematocrit. The commonly reported vortex in in the central RA is confirmed; however, a new, smaller vortex was also recorded in the auricle. When IVC flow dominates, as is normal, TKE in the RA is reduced and WSS in the venae cavae equalize. Significant helicity exists in the vena cava, as a result of distal geometry and this geometry appears crucial to accurately simulating RA flow. NEW & NOTEWORTHY Right atrium turbulent kinetic energy increases as the proportion of flow entering from the superior vena cava is increased. Although the commonly reported large right atrium vortex was confirmed across all flow scenarios, a new smaller vortex is observed in the right auricle. The caval veins exhibit highly helical flow and this appears to be the result of distal venous morphology.
AB - The right atrium (RA) combines the superior vena cava (SVC) and inferior vena cava (IVC) flows. Treatments like extracorporeal membrane oxygenation (ECMO) and hemodialysis by catheter alter IVC/SVC flows. Here we assess how altered IVC/SVC flow contributions impact RA flow. Four healthy volunteers were imaged with computerized tomography (CT), reconstructed and combined into a patient-averaged model. Large eddy simulations (LESs) were performed for a range of IVC/SVC flow contributions (30%–70% each, increments of 5%) and common flow metrics were recorded. Model sensitivity to reconstruction domain extent, constant/pulsatile inlets, and hematocrit was also assessed. Consistent with literature, a single vortex occupied the central RA across all flowrates with a smaller counter-rotating vortex, not previously reported, in the auricle. Vena cava flow was highly helical. RA turbulent kinetic energy (TKE; P = 0.027) and time-averaged wall shear stress (WSS; P < 0.001) increased with SVC flow. WSS was lower in the auricle (2 Pa, P < 0.001). WSS in the vena cava was equal at IVC/SVC = 65/35%. The model was highly sensitive to the reconstruction domain with cropped geometries lacking helicity in the venae cavae, altering the RA flow. The RA flow was not significantly affected by constant inlets or hematocrit. The commonly reported vortex in in the central RA is confirmed; however, a new, smaller vortex was also recorded in the auricle. When IVC flow dominates, as is normal, TKE in the RA is reduced and WSS in the venae cavae equalize. Significant helicity exists in the vena cava, as a result of distal geometry and this geometry appears crucial to accurately simulating RA flow. NEW & NOTEWORTHY Right atrium turbulent kinetic energy increases as the proportion of flow entering from the superior vena cava is increased. Although the commonly reported large right atrium vortex was confirmed across all flow scenarios, a new smaller vortex is observed in the right auricle. The caval veins exhibit highly helical flow and this appears to be the result of distal venous morphology.
KW - basic science research
KW - computerized tomography (CT)
KW - hemodynamics
KW - right atrium
KW - vena cava
UR - http://www.scopus.com/inward/record.url?scp=85129778379&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00649.2021
DO - 10.1152/japplphysiol.00649.2021
M3 - Article
C2 - 35271411
AN - SCOPUS:85129778379
SN - 8750-7587
VL - 132
SP - 1167
EP - 1178
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 5
ER -