TY - JOUR
T1 - Identification of the Critical Features of a Small Peptide Inhibitor of JNK Activity
AU - Barr, Renae
AU - Kendrick, T.S.
AU - Bogoyevitch, M.A.
PY - 2002
Y1 - 2002
N2 - The c-Jun N-terminal kinases (JNKs) are a subfamily of the mitogen-activated protein kinases (NLAPKs). Although progress in evaluating the functions of other MAPKs has been facilitated by the characterization of specific inhibitors, no JNK-directed inhibitor is commercially available. We have identified a 21-amino acid peptide inhibitor of activated JNKs, based on amino acids 143-163 of the JNK-binding domain (JBD) of the JNK scaffolding protein, JNK-interacting protein-1 (JIP-1). This peptide, I-JIP (Inhibitor of JNK-based on JIP-1), inhibited JNK activity in vitro toward recombinant c-Jun, Elk, and ATF2 up to 90%. A truncated I-JIP (TI-JIP), the C-terminal 11 amino acids of I-JIP, directly interacted with recombinant JNKs but not its substrates as shown by surface plasmon resonance analysis. Scanning alanine replacement within truncated I-JIP identified 4 residues (Arg-156, Pro-157, Leu-160, or Leu-162) as independently critical for inhibition. JBD peptide sequences from JIP-2 and JIP-3 shared these critical residues and accordingly were effective JNK inhibitors. In contrast, peptides based on the JBDs of ATF2 and c-Jun inhibited JNK activity by
AB - The c-Jun N-terminal kinases (JNKs) are a subfamily of the mitogen-activated protein kinases (NLAPKs). Although progress in evaluating the functions of other MAPKs has been facilitated by the characterization of specific inhibitors, no JNK-directed inhibitor is commercially available. We have identified a 21-amino acid peptide inhibitor of activated JNKs, based on amino acids 143-163 of the JNK-binding domain (JBD) of the JNK scaffolding protein, JNK-interacting protein-1 (JIP-1). This peptide, I-JIP (Inhibitor of JNK-based on JIP-1), inhibited JNK activity in vitro toward recombinant c-Jun, Elk, and ATF2 up to 90%. A truncated I-JIP (TI-JIP), the C-terminal 11 amino acids of I-JIP, directly interacted with recombinant JNKs but not its substrates as shown by surface plasmon resonance analysis. Scanning alanine replacement within truncated I-JIP identified 4 residues (Arg-156, Pro-157, Leu-160, or Leu-162) as independently critical for inhibition. JBD peptide sequences from JIP-2 and JIP-3 shared these critical residues and accordingly were effective JNK inhibitors. In contrast, peptides based on the JBDs of ATF2 and c-Jun inhibited JNK activity by
U2 - 10.1074/jbc.M107565200
DO - 10.1074/jbc.M107565200
M3 - Article
C2 - 11790767
SN - 0021-9258
VL - 277
SP - 10987
EP - 10997
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 13
ER -