Identification of redox and buffering processes during injection of oxic water into a deep pyritic aquifer: Experiments and kinetic reaction model

C. Descourvieres, H. Prommer, N. Hartog, C. Oldham

Research output: Chapter in Book/Conference paperChapter


Laboratory experiments were used to study the geochemical controls on sediment reactivity and buffering processes during the injection of oxygen (O2) saturated waters into a deep anoxic heterogeneous siliclastic sedimentary aquifer. Detailed geochemical characterisation and sediment incubation experiments identified pyrite (20–100%), sedimentary organic matter (SOM; 3–56%), siderite (3–28%) and Fe(II)-aluminosilicates (8–55%) as the main O2 reductants. Trace-levels of carbonate acted as a pH buffer, while a lower boundary pH of 3 indicated acid buffering by K-feldspar dissolution. The processes identified were used to formulate a kinetic reaction modelling framework that was able to reproduce (i) the observed, transient O2 consumption and CO2 production (ii) the major ion composition at completion, and (iii) the observed trace metal releases in each of the treatments. The experiments showed that the approach was useful for identifying and quantifying key geochemical reactions that affect the water quality evolution in artificially recharged anoxic aquifers.

Original languageEnglish
Title of host publicationWater-Rock Interaction
PublisherCRC Press
Number of pages4
ISBN (Electronic)9781439862995
Publication statusPublished - 1 Jan 2010


Cite this