Hollow Cu2O@CoMn2O4 Nanoreactors for Electrochemical NO Reduction to NH3: Elucidating the Void-Confinement Effects on Intermediates

Chunpeng Bai, Shiying Fan, Xinyong Li, Zhaodong Niu, Jing Wang, Zhiyuan Liu, Dongke Zhang

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Hollow nanoreactors show great potential in catalysis due to the void-confinement effect. Yet few studies have investigated the void-confinement effect of hollow nanoreactors on intermediates. Herein, electrochemical NO reduction to NH3 (ENOR) is used as a probe reaction to study the void-confinement effect of hollow Cu2O@CoMn2O4 nanoreactors on intermediates. Combined with the results of catalytic activity, H2-treated in situ diffusion Fourier transform infrared spectroscopy and the finite-element method simulation confirm that the void-confinement effect on the intermediate is the main reason for enhanced ENOR efficiency. Additionally, theoretical calculations also show that the Cu sites of Cu2O@CoMn2O4 nanoreactors are favorable for the formation of *NOH intermediates. This work not only gives an insight into void-confinement effect of hollow nanoreactors on intermediates but also provides a valuable strategy for improving ENOR.
Original languageEnglish
Article number2205569
JournalAdvanced Functional Materials
Volume32
Issue number41
DOIs
Publication statusPublished - 10 Oct 2022

Fingerprint

Dive into the research topics of 'Hollow Cu2O@CoMn2O4 Nanoreactors for Electrochemical NO Reduction to NH3: Elucidating the Void-Confinement Effects on Intermediates'. Together they form a unique fingerprint.

Cite this