### Abstract

The ability to accurately calculate reaction barrier heights is of central importance to many areas of chemistry. We report an extensive study examining the basis set convergence of post-CCSD(T) contributions (up to CCSDT(Q)) for a diverse set of 28 reaction barrier heights. In contrast to previous studies, we focus here on larger transition structures (TSs) involving 4-7 non-hydrogen atoms. The set of reaction barrier heights includes pericyclic, bipolar cycloaddition, cycloreversion, and multiple-proton transfer reactions. We find that in most cases post-CCSD(T) contributions converge rapidly toward the basis set limit, such that even double-zeta and truncated double-zeta basis sets provide useful estimates of the T-(T) and (Q) contributions, respectively. In addition, we find that due to the tendency of these small basis sets to systematically underestimate the T-(T) and (Q) components, scaling is an effective approach for improving performance. For example, scaling the T-(T)/cc-pVDZ contribution by 1.25 results in an RMSD of merely 0.4 kJ mol(-1) relative to basis set limit reference values from W3lite-F12 theory. Similarly, calculating the (Q) contribution with a cc-pVDZ basis set without d functions and scaling by 1.6 results in an RMSD of 0.5 kJ mol(-1). We also examine the magnitude of post-CCSD(T) contributions for a wide range of TSs. We find that for pericyclic, bipolar cycloaddition, and multiple-proton transfer reactions there is an effective cancellation between the T-(T) and (Q) components (i.e., they have opposite signs and are of similar magnitude), such that overall post-CCSD(T) contributions to the reaction barrier heights are below similar to 1 kJ mol(1) (in absolute value). However, for the barrier heights of cycloreversion reactions, the T-(T) and (Q) components are both negative and large and consequentially post-CCSD(T) contributions reduce the reaction barrier heights by significant amounts ranging between 4.1 and 6.7 kJ mol(-1).

Original language | English |
---|---|

Pages (from-to) | 6720-6732 |

Number of pages | 13 |

Journal | Journal of Physical Chemistry A |

Volume | 123 |

Issue number | 31 |

DOIs | |

Publication status | Published - 8 Aug 2019 |

### Cite this

*Journal of Physical Chemistry A*,

*123*(31), 6720-6732. https://doi.org/10.1021/acs.jpca.9b04611

}

*Journal of Physical Chemistry A*, vol. 123, no. 31, pp. 6720-6732. https://doi.org/10.1021/acs.jpca.9b04611

**Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures : Basis Set Convergence and Cost-Effective Approaches for Estimating Post-CCSD(T) Contributions.** / Karton, Amir.

Research output: Contribution to journal › Article

TY - JOUR

T1 - Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures

T2 - Basis Set Convergence and Cost-Effective Approaches for Estimating Post-CCSD(T) Contributions

AU - Karton, Amir

PY - 2019/8/8

Y1 - 2019/8/8

N2 - The ability to accurately calculate reaction barrier heights is of central importance to many areas of chemistry. We report an extensive study examining the basis set convergence of post-CCSD(T) contributions (up to CCSDT(Q)) for a diverse set of 28 reaction barrier heights. In contrast to previous studies, we focus here on larger transition structures (TSs) involving 4-7 non-hydrogen atoms. The set of reaction barrier heights includes pericyclic, bipolar cycloaddition, cycloreversion, and multiple-proton transfer reactions. We find that in most cases post-CCSD(T) contributions converge rapidly toward the basis set limit, such that even double-zeta and truncated double-zeta basis sets provide useful estimates of the T-(T) and (Q) contributions, respectively. In addition, we find that due to the tendency of these small basis sets to systematically underestimate the T-(T) and (Q) components, scaling is an effective approach for improving performance. For example, scaling the T-(T)/cc-pVDZ contribution by 1.25 results in an RMSD of merely 0.4 kJ mol(-1) relative to basis set limit reference values from W3lite-F12 theory. Similarly, calculating the (Q) contribution with a cc-pVDZ basis set without d functions and scaling by 1.6 results in an RMSD of 0.5 kJ mol(-1). We also examine the magnitude of post-CCSD(T) contributions for a wide range of TSs. We find that for pericyclic, bipolar cycloaddition, and multiple-proton transfer reactions there is an effective cancellation between the T-(T) and (Q) components (i.e., they have opposite signs and are of similar magnitude), such that overall post-CCSD(T) contributions to the reaction barrier heights are below similar to 1 kJ mol(1) (in absolute value). However, for the barrier heights of cycloreversion reactions, the T-(T) and (Q) components are both negative and large and consequentially post-CCSD(T) contributions reduce the reaction barrier heights by significant amounts ranging between 4.1 and 6.7 kJ mol(-1).

AB - The ability to accurately calculate reaction barrier heights is of central importance to many areas of chemistry. We report an extensive study examining the basis set convergence of post-CCSD(T) contributions (up to CCSDT(Q)) for a diverse set of 28 reaction barrier heights. In contrast to previous studies, we focus here on larger transition structures (TSs) involving 4-7 non-hydrogen atoms. The set of reaction barrier heights includes pericyclic, bipolar cycloaddition, cycloreversion, and multiple-proton transfer reactions. We find that in most cases post-CCSD(T) contributions converge rapidly toward the basis set limit, such that even double-zeta and truncated double-zeta basis sets provide useful estimates of the T-(T) and (Q) contributions, respectively. In addition, we find that due to the tendency of these small basis sets to systematically underestimate the T-(T) and (Q) components, scaling is an effective approach for improving performance. For example, scaling the T-(T)/cc-pVDZ contribution by 1.25 results in an RMSD of merely 0.4 kJ mol(-1) relative to basis set limit reference values from W3lite-F12 theory. Similarly, calculating the (Q) contribution with a cc-pVDZ basis set without d functions and scaling by 1.6 results in an RMSD of 0.5 kJ mol(-1). We also examine the magnitude of post-CCSD(T) contributions for a wide range of TSs. We find that for pericyclic, bipolar cycloaddition, and multiple-proton transfer reactions there is an effective cancellation between the T-(T) and (Q) components (i.e., they have opposite signs and are of similar magnitude), such that overall post-CCSD(T) contributions to the reaction barrier heights are below similar to 1 kJ mol(1) (in absolute value). However, for the barrier heights of cycloreversion reactions, the T-(T) and (Q) components are both negative and large and consequentially post-CCSD(T) contributions reduce the reaction barrier heights by significant amounts ranging between 4.1 and 6.7 kJ mol(-1).

KW - CORRELATED MOLECULAR CALCULATIONS

KW - GAUSSIAN-BASIS SETS

KW - PERICYCLIC-REACTIONS

KW - COMPUTATIONAL THERMOCHEMISTRY

KW - 1,3-DIPOLAR CYCLOADDITIONS

KW - ACTIVATION BARRIERS

KW - REACTION ENERGETICS

KW - CBS-QB3 METHODS

KW - STANDARD SET

KW - AB-INITIO

U2 - 10.1021/acs.jpca.9b04611

DO - 10.1021/acs.jpca.9b04611

M3 - Article

VL - 123

SP - 6720

EP - 6732

JO - The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory

JF - The Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory

SN - 1089-5639

IS - 31

ER -