TY - JOUR
T1 - High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity
AU - Meacham-Hensold, Katherine
AU - Montes, Christopher M.
AU - Wu, Jin
AU - Guan, Kaiyu
AU - Fu, Peng
AU - Ainsworth, Elizabeth A.
AU - Pederson, Taylor
AU - Moore, Caitlin E.
AU - Brown, Kenny Lee
AU - Raines, Christine
AU - Bernacchi, Carl J.
PY - 2019/9/15
Y1 - 2019/9/15
N2 - Spectroscopy is becoming an increasingly powerful tool to alleviate the challenges of traditional measurements of key plant traits at the leaf, canopy, and ecosystem scales. Spectroscopic methods often rely on statistical approaches to reduce data redundancy and enhance useful prediction of physiological traits. Given the mechanistic uncertainty of spectroscopic techniques, genetic modification of plant biochemical pathways may affect reflectance spectra causing predictive models to lose power. The objectives of this research were to assess over two separate years, whether a predictive model can represent natural and imposed variation in leaf photosynthetic potential for different crop cultivars and genetically modified plants, to assess the interannual capabilities of a partial least square regression (PLSR) model, and to determine whether leaf N is a dominant driver of photosynthesis in PLSR models. In 2016, a PLSR analysis of reflectance spectra coupled with gas exchange data was used to build predictive models for photosynthetic parameters including maximum carboxylation rate of Rubisco (Vc,max), maximum electron transport rate (Jmax) and percentage leaf nitrogen ([N]). The model was developed for wild type and genetically modified plants that represent a wide range of photosynthetic capacities. Results show that hyperspectral reflectance accurately predicted Vc,max, Jmax and [N] for all plants measured in 2016. Applying these PLSR models to plants grown in 2017 resulted in a strong predictive ability relative to gas exchange measurements for Vc,max, but not for Jmax, and not for genotypes unique to 2017. Building a new model including data collected in 2017 resulted in more robust predictions, with R2 increases of 17% for Vc,max. and 13% Jmax. Plants generally have a positive correlation between leaf nitrogen and photosynthesis, however, tobacco with reduced Rubisco (SSuD) had significantly higher [N] despite much lower Vc,max. The PLSR model was able to accurately predict both lower Vc,max and higher leaf [N] for this genotype suggesting that the spectral based estimates of Vc,max and leaf nitrogen [N] are independent. These results suggest that the PLSR model can be applied across years, but only to genotypes used to build the model and that the actual mechanism measured with the PLSR technique is not directly related to leaf [N]. The success of the leaf-scale analysis suggests that similar approaches may be successful at the canopy and ecosystem scales but to use these methods across years and between genotypes at any scale, application of accurately populated physical based models based on radiative transfer principles may be required.
AB - Spectroscopy is becoming an increasingly powerful tool to alleviate the challenges of traditional measurements of key plant traits at the leaf, canopy, and ecosystem scales. Spectroscopic methods often rely on statistical approaches to reduce data redundancy and enhance useful prediction of physiological traits. Given the mechanistic uncertainty of spectroscopic techniques, genetic modification of plant biochemical pathways may affect reflectance spectra causing predictive models to lose power. The objectives of this research were to assess over two separate years, whether a predictive model can represent natural and imposed variation in leaf photosynthetic potential for different crop cultivars and genetically modified plants, to assess the interannual capabilities of a partial least square regression (PLSR) model, and to determine whether leaf N is a dominant driver of photosynthesis in PLSR models. In 2016, a PLSR analysis of reflectance spectra coupled with gas exchange data was used to build predictive models for photosynthetic parameters including maximum carboxylation rate of Rubisco (Vc,max), maximum electron transport rate (Jmax) and percentage leaf nitrogen ([N]). The model was developed for wild type and genetically modified plants that represent a wide range of photosynthetic capacities. Results show that hyperspectral reflectance accurately predicted Vc,max, Jmax and [N] for all plants measured in 2016. Applying these PLSR models to plants grown in 2017 resulted in a strong predictive ability relative to gas exchange measurements for Vc,max, but not for Jmax, and not for genotypes unique to 2017. Building a new model including data collected in 2017 resulted in more robust predictions, with R2 increases of 17% for Vc,max. and 13% Jmax. Plants generally have a positive correlation between leaf nitrogen and photosynthesis, however, tobacco with reduced Rubisco (SSuD) had significantly higher [N] despite much lower Vc,max. The PLSR model was able to accurately predict both lower Vc,max and higher leaf [N] for this genotype suggesting that the spectral based estimates of Vc,max and leaf nitrogen [N] are independent. These results suggest that the PLSR model can be applied across years, but only to genotypes used to build the model and that the actual mechanism measured with the PLSR technique is not directly related to leaf [N]. The success of the leaf-scale analysis suggests that similar approaches may be successful at the canopy and ecosystem scales but to use these methods across years and between genotypes at any scale, application of accurately populated physical based models based on radiative transfer principles may be required.
KW - Food security
KW - Gas exchange
KW - Hyperspectral reflectance
KW - Leaf nitrogen
KW - Partial least squares regression (PLSR)
KW - Photosynthesis
KW - Spectroscopy
UR - http://www.scopus.com/inward/record.url?scp=85068453894&partnerID=8YFLogxK
U2 - 10.1016/j.rse.2019.04.029
DO - 10.1016/j.rse.2019.04.029
M3 - Article
C2 - 31534277
AN - SCOPUS:85068453894
SN - 0034-4257
VL - 231
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
M1 - 111176
ER -