Hierarchically porous hydrangea-like In2S3/In2O3 heterostructures for enhanced photocatalytic hydrogen evolution

Manli Liu, Pan Li, Shuaijun Wang, Yingmin Liu, Jinqiang Zhang, Lin Chen, Junmei Wang, Yushan Liu, Qi Shen, Peng Qu, Hongqi Sun

Research output: Contribution to journalArticlepeer-review

67 Citations (Web of Science)

Abstract

Semiconductor-based photocatalytic hydrogen evolution is considered to be a promising and cost-effective approach to address the environmental issues and energy crisis. It still remains a great challenge to design highly-efficient semiconductor photocatalysts via a facile method. Herein, hierarchically porous hydrangea-like In2S3/In2O3 heterostructures are successfully synthesized via a simple in situ oxidization process. The formed In2S3/In2O3 heterostructures exhibit superior photocatalytic activity to the counterpart In2S3 and In2O3. The boosted photocatalytic performance is ascribed to the formed heterostructures, which greatly facilitate the interfacial charge transfer. Moreover, the formation of hierarchically porous heterostructures increases the number of active sites and improves the permeability, and thus significantly promotes the photocatalytic H2 evolution activity. This work may provide a new insight for designing In2S3-based heterostructures for efficient solar light conversion.

Original languageEnglish
Pages (from-to)876-882
Number of pages7
JournalJournal of Colloid and Interface Science
Volume587
DOIs
Publication statusPublished - Apr 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hierarchically porous hydrangea-like In2S3/In2O3 heterostructures for enhanced photocatalytic hydrogen evolution'. Together they form a unique fingerprint.

Cite this