Hemodynamic and recirculation performance of dual lumen cannulas for venovenous extracorporeal membrane oxygenation

Louis P. Parker, Anders Svensson Marcial, Torkel B. Brismar, Lars Mikael Broman, Lisa Prahl Wittberg

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Venovenous extracorporeal membrane oxygenation (ECMO) can be performed with two single lumen cannulas (SLCs) or one dual-lumen cannula (DLC) where low recirculation fraction (Rf) is a key performance criterion. DLCs are widely believed to have lower Rf , though these have not been directly compared. Similarly, correct positioning is considered critical although its impact is unclear. We aimed to compare two common bi-caval DLC designs and quantify R f in several positions. Two different commercially available DLCs were sectioned, measured, reconstructed, scaled to 27Fr and simulated in our previously published patient-averaged computational model of the right atrium (RA) and venae cavae at 2–6 L/min. One DLC was then used to simulate ± 30° and ± 60° rotation and ± 4 cm insertion depth. Both designs had low Rf (< 7%) and similar SVC/IVC drainage fractions and pressure drops. Both cannula reinfusion ports created a high-velocity jet and high shear stresses in the cannula (> 413 Pa) and RA (> 52 Pa) even at low flow rates. Caval pressures were abnormally high (16.2–23.9 mmHg) at low flow rates. Rotation did not significantly impact Rf . Short insertion depth increased Rf (> 31%) for all flow rates whilst long insertion only increased Rf at 6 L/min (24%). Our results show that DLCs have lower Rf compared to SLCs at moderate-high flow rates (> 4 L/min), but high shear stresses. Obstruction from DLCs increases caval pressures at low flow rates, a potential reason for increased intracranial hemorrhages. Cannula rotation does not impact Rf though correct insertion depth is critical.

Original languageEnglish
Article number7472
Number of pages11
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2023
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hemodynamic and recirculation performance of dual lumen cannulas for venovenous extracorporeal membrane oxygenation'. Together they form a unique fingerprint.

Cite this