TY - JOUR
T1 - Hearing brighter
T2 - Changing in-depth visual perception through looming sounds
AU - Sutherland, Clare A M
AU - Thut, Gregor
AU - Romei, Vincenzo
PY - 2014
Y1 - 2014
N2 - Rapidly approaching (looming) sounds are ecologically salient stimuli that are perceived as nearer than they are due to overestimation of their loudness change and underestimation of their distance (Neuhoff, 1998; Seifritz et al., 2002). Despite evidence for crossmodal influence by looming sounds onto visual areas (Romei, Murray, Cappe, & Thut, 2009, 2013; Tyll et al., 2013), it is unknown whether such sounds bias visual percepts in similar ways. Nearer objects appear to be larger and brighter than distant objects. If looming sounds impact visual processing, then visual stimuli paired with looming sounds should be perceived as brighter and larger, even when the visual stimuli do not provide motion cues, i.e. are static. In Experiment 1 we found that static visual objects paired with looming tones (but not static or receding tones) were perceived as larger and brighter than their actual physical properties, as if they appear closer to the observer. In a second experiment, we replicate and extend the findings of Experiment 1. Crucially, we did not find evidence of such bias by looming sounds when visual processing was disrupted via masking or when catch trials were presented, ruling out simple response bias. Finally, in a third experiment we found that looming tones do not bias visual stimulus characteristics that do not carry visual depth information such as shape, providing further evidence that they specifically impact in-depth visual processing. We conclude that looming sounds impact visual perception through a mechanism transferring in-depth sound motion information onto the relevant in-depth visual dimensions (such as size and luminance but not shape) in a crossmodal remapping of information for a genuine, evolutionary advantage in stimulus detection.
AB - Rapidly approaching (looming) sounds are ecologically salient stimuli that are perceived as nearer than they are due to overestimation of their loudness change and underestimation of their distance (Neuhoff, 1998; Seifritz et al., 2002). Despite evidence for crossmodal influence by looming sounds onto visual areas (Romei, Murray, Cappe, & Thut, 2009, 2013; Tyll et al., 2013), it is unknown whether such sounds bias visual percepts in similar ways. Nearer objects appear to be larger and brighter than distant objects. If looming sounds impact visual processing, then visual stimuli paired with looming sounds should be perceived as brighter and larger, even when the visual stimuli do not provide motion cues, i.e. are static. In Experiment 1 we found that static visual objects paired with looming tones (but not static or receding tones) were perceived as larger and brighter than their actual physical properties, as if they appear closer to the observer. In a second experiment, we replicate and extend the findings of Experiment 1. Crucially, we did not find evidence of such bias by looming sounds when visual processing was disrupted via masking or when catch trials were presented, ruling out simple response bias. Finally, in a third experiment we found that looming tones do not bias visual stimulus characteristics that do not carry visual depth information such as shape, providing further evidence that they specifically impact in-depth visual processing. We conclude that looming sounds impact visual perception through a mechanism transferring in-depth sound motion information onto the relevant in-depth visual dimensions (such as size and luminance but not shape) in a crossmodal remapping of information for a genuine, evolutionary advantage in stimulus detection.
KW - Audio-visual integration
KW - Crossmodal perception
KW - Looming sounds
UR - http://www.scopus.com/inward/record.url?scp=84900853275&partnerID=8YFLogxK
U2 - 10.1016/j.cognition.2014.04.011
DO - 10.1016/j.cognition.2014.04.011
M3 - Article
C2 - 24858108
AN - SCOPUS:84900853275
SN - 0010-0277
VL - 132
SP - 312
EP - 323
JO - Cognition
JF - Cognition
IS - 3
ER -