Gravitational wave detectors with broadband high frequency sensitivity

Michael A. Page, Maxim Goryachev, Haixing Miao, Yanbei Chen, Yiqiu Ma, David Mason, Massimiliano Rossi, Carl D. Blair, Li Ju, David G. Blair, Albert Schliesser, Michael E. Tobar, Chunnong Zhao

Research output: Contribution to journalArticle

Abstract

Gravitational waves from the neutron star coalescence GW170817 were observed from the inspiral, but not the high frequency postmerger nuclear matter motion. Optomechanical white light signal recycling has been proposed for achieving broadband sensitivity in gravitational wave detectors, but has been reliant on development of suitable ultra-low loss mechanical components. Here we show demonstrated optomechanical resonators that meet loss requirements for a white light signal recycling interferometer with strain sensitivity below 10−24 Hz−1/2 at a few kHz. Experimental data for two resonators are combined with analytic models of interferometers similar to LIGO to demonstrate enhancement across a broader band of frequencies versus dual-recycled Fabry-Perot Michelson detectors. Candidate resonators are a silicon nitride membrane acoustically isolated by a phononic crystal, and a single-crystal quartz acoustic cavity. Optical power requirements favour the membrane resonator, while thermal noise performance favours the quartz resonator. Both could be implemented as add-on components to existing detectors.

Original languageEnglish
Article number27
JournalCommunications Physics
Volume4
Issue number1
DOIs
Publication statusPublished - Dec 2021

Fingerprint Dive into the research topics of 'Gravitational wave detectors with broadband high frequency sensitivity'. Together they form a unique fingerprint.

Cite this