Graphical tools for model selection in generalized linear models

Kevin Murray, S. Héritier, S. Müller

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    Model selection techniques have existed for many years; however, to date, simple, clear and effective methods of visualising the model building process are sparse. This article describes graphical methods that assist in the selection of models and comparison of many different selection criteria. Specifically, we describe for logistic regression, how to visualize measures of description loss and of model complexity to facilitate the model selection dilemma. We advocate the use of the bootstrap to assess the stability of selected models and to enhance our graphical tools. We demonstrate which variables are important using variable inclusion plots and show that these can be invaluable plots for the model building process. We show with two case studies how these proposed tools are useful to learn more about important variables in the data and how these tools can assist the understanding of the model building process. © 2013 John Wiley & Sons, Ltd. © 2013 John Wiley & Sons, Ltd.
    Original languageEnglish
    Pages (from-to)4438-4451
    JournalStatistics in Medicine
    Volume32
    Issue number25
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Graphical tools for model selection in generalized linear models'. Together they form a unique fingerprint.

    Cite this