Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels

Research output: Contribution to journalArticle

102 Citations (Scopus)
2247 Downloads (Pure)


[1] Periods of high astronomically generated tides contribute to the occurrence of extreme sea levels. Over interannual time scales, two precessions associated with the orbit of the Moon cause systematic variation of high tides. A global assessment of when these tidal modulations occur allows for the prediction of periods when the enhanced risk of coastal flooding is likely in different parts of the world. This paper uses modeled tides to assess the influence of the 18.61 year lunar nodal cycle and the 8.85 year cycle of lunar perigee (which affects high tidal levels as a quasi 4.4 year cycle) on high tidal levels on a global scale. Tidal constituents from the TPXO7.2 global tidal model are used, with satellite modulation corrections based on equilibrium tide expectations, to predict multidecadal hourly time series of tides on a one-quarter degree global grid. These time series are used to determine the amplitude and phase of tidal modulations using harmonic analysis fitted to 18.61, 9.305, 8.85, and 4.425 year sinusoidal signals. The spatial variations in the range and phase of the tidal modulations are related to the global distribution of the main tidal constituents and tidal characteristics (diurnal or semidiurnal and tidal range). Results indicate that the 18.61 year nodal cycle has the greatest influence in diurnal regions with tidal ranges of >4 m and that the 4.4 year cycle is largest in semidiurnal regions where the tidal range is >6 m. The phase of the interannual tidal modulations is shown to relate to the form of the tide.
Original languageEnglish
Article numberC06025
Number of pages16
JournalJournal of Geophysical Research - Oceans
Early online date29 Jun 2011
Publication statusPublished - Jun 2011

Fingerprint Dive into the research topics of 'Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels'. Together they form a unique fingerprint.

Cite this