TY - THES

T1 - Geometrically-defined curves in Riemannian manifolds

AU - Popiel, Tomasz

PY - 2007

Y1 - 2007

N2 - [Truncated abstract] This thesis is concerned with geometrically-defined curves that can be used for interpolation in Riemannian or, more generally, semi-Riemannian manifolds. As in much of the existing literature on such curves, emphasis is placed on manifolds which are important in computer graphics and engineering applications, namely the unit 3-sphere S3 and the closely related rotation group SO(3), as well as other Lie groups and spheres of arbitrary dimension. All geometrically-defined curves investigated in the thesis are either higher order variational curves, namely critical points of cost functionals depending on (covariant) derivatives of order greater than 1, or defined by geometrical algorithms, namely generalisations to manifolds of algorithms from the field of computer aided geometric design. Such curves are needed, especially in the aforementioned applications, since interpolation methods based on applying techniques of classical approximation theory in coordinate charts often produce unnatural interpolants. However, mathematical properties of higher order variational curves and curves defined by geometrical algorithms are in need of substantial further investigation: higher order variational curves are solutions of complicated nonlinear differential equations whose properties are not well-understood; it is usually unclear how to impose endpoint derivative conditions on, or smoothly piece together, curves defined by geometrical algorithms. This thesis addresses these difficulties for several classes of curves. ... The geometrical algorithms investigated in this thesis are generalisations of the de Casteljau and Cox-de Boor algorithms, which define, respectively, polynomial B'ezier and piecewise-polynomial B-spline curves by dividing, in certain ratios and for a finite number of iterations, piecewise-linear control polygons corresponding to finite sequences of control points. We show how the control points of curves produced by the generalised

AB - [Truncated abstract] This thesis is concerned with geometrically-defined curves that can be used for interpolation in Riemannian or, more generally, semi-Riemannian manifolds. As in much of the existing literature on such curves, emphasis is placed on manifolds which are important in computer graphics and engineering applications, namely the unit 3-sphere S3 and the closely related rotation group SO(3), as well as other Lie groups and spheres of arbitrary dimension. All geometrically-defined curves investigated in the thesis are either higher order variational curves, namely critical points of cost functionals depending on (covariant) derivatives of order greater than 1, or defined by geometrical algorithms, namely generalisations to manifolds of algorithms from the field of computer aided geometric design. Such curves are needed, especially in the aforementioned applications, since interpolation methods based on applying techniques of classical approximation theory in coordinate charts often produce unnatural interpolants. However, mathematical properties of higher order variational curves and curves defined by geometrical algorithms are in need of substantial further investigation: higher order variational curves are solutions of complicated nonlinear differential equations whose properties are not well-understood; it is usually unclear how to impose endpoint derivative conditions on, or smoothly piece together, curves defined by geometrical algorithms. This thesis addresses these difficulties for several classes of curves. ... The geometrical algorithms investigated in this thesis are generalisations of the de Casteljau and Cox-de Boor algorithms, which define, respectively, polynomial B'ezier and piecewise-polynomial B-spline curves by dividing, in certain ratios and for a finite number of iterations, piecewise-linear control polygons corresponding to finite sequences of control points. We show how the control points of curves produced by the generalised

KW - Curves

KW - Riemannian manifolds

KW - Riemannian cubic

KW - Bezier curve

KW - Lie quadratic

KW - B-spline

M3 - Doctoral Thesis

ER -