Geochemistry and tectonic implications of the Early Carboniferous Keketuobie intrusion in the West Junggar foldbelt, NW China

Yu Feng Deng, Feng Yuan, Taofa Zhou, Pete Hollings, Dayu Zhang

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The Keketuobie intrusion is situated in the northern part of the West Junggar foldbelt at the southern margin of the Central Asian Orogeic Belt. The intrusion consists of medium- to coarse-grained gabbro, fine-grained gabbro and diorite. Igneous zircons from the medium- to coarse-grained gabbro yielded a LA-ICP-MS U-Pb age of 320.8 ± 5.7 Ma, indicating that the intrusion was emplaced in the Early Carboniferous. The intrusive contact between the medium- to coarse-grained gabbro and the fine-grained gabbro indicates they formed from distinct magma pulses. Magnetite crystals from the fine-grained gabbro have lower V2O3 but higher TiO2 and Al2O3 contents than those of the medium- to coarse-grained gabbro, suggesting that the fine-grained gabbro crystallized in a relatively higher fO2 and temperature magma than the medium- to coarse-grained gabbro. The Keketuobie intrusive rocks are characterized by enriched large ion lithophile elements and depleted high field strength elements relative to N-MORB with restricted (87Sr/86Sr)t ratios (0.70370–0.70400) and εNd(t) values (+5.85 to +6.97). The petrography and geochemistry are comparable to those of subduction-related volcanic rocks. The trace elements and isotopic compositions of the mafic intrusive rocks suggest that the primary magmas were derived from mixing of metasomatized lithospheric mantle and depleted asthenospheric melts, perhaps triggered by slab break-off. The Keketuobie intrusion is younger than adjacent ophiolite sequences, island arc volcanic rocks and porphyry deposits, but predates the post-collisional A-type granites and bimodal volcanic rocks in the district, suggesting that the Keketuobie intrusion likely formed in a syn-collisional setting.

Original languageEnglish
Pages (from-to)142-154
Number of pages13
JournalJournal of Asian Earth Sciences
Volume159
DOIs
Publication statusPublished - 15 Jun 2018

    Fingerprint

Cite this