TY - JOUR
T1 - Genome-wide analysis of the frequency and distribution of crossovers at male and female meiosis in Sinapis alba L. (white mustard)
AU - Nelson, Matthew
AU - Nixon, J.
AU - Lydiate, D.J.
PY - 2005
Y1 - 2005
N2 - We present the first genetic linkage maps of Sinapis alba (white mustard) and a rigorous analysis of sex effects on the frequency and distribution of crossovers at meiosis in this species. Sex-averaged maps representing recombination in two highly heterozygous parents were aligned to give a consensus map consisting of 382 loci defined by restriction fragment length polymorphisms and arranged in 12 linkage groups with no unlinked markers. The loci were distributed in a near-random manner across the genome, and there was little evidence of segregation distortion. From these dense maps, a subset of spaced informative markers was used to establish recombination frequencies assayed separately in male and female gametes and derived from two distinct genetic backgrounds. Analyses of 746 gametes indicated that recombination frequencies were greater in male gametes, with the greatest differences near the ends of linkage groups. Genetic background had a lesser effect on recombination frequencies, with no discernible pattern in the distribution of such differences. The possible causes of sex differences in recombination frequency and the implications for plant breeding are discussed.
AB - We present the first genetic linkage maps of Sinapis alba (white mustard) and a rigorous analysis of sex effects on the frequency and distribution of crossovers at meiosis in this species. Sex-averaged maps representing recombination in two highly heterozygous parents were aligned to give a consensus map consisting of 382 loci defined by restriction fragment length polymorphisms and arranged in 12 linkage groups with no unlinked markers. The loci were distributed in a near-random manner across the genome, and there was little evidence of segregation distortion. From these dense maps, a subset of spaced informative markers was used to establish recombination frequencies assayed separately in male and female gametes and derived from two distinct genetic backgrounds. Analyses of 746 gametes indicated that recombination frequencies were greater in male gametes, with the greatest differences near the ends of linkage groups. Genetic background had a lesser effect on recombination frequencies, with no discernible pattern in the distribution of such differences. The possible causes of sex differences in recombination frequency and the implications for plant breeding are discussed.
U2 - 10.1007/s00122-005-1961-4
DO - 10.1007/s00122-005-1961-4
M3 - Article
C2 - 15902398
SN - 0040-5752
VL - 111
SP - 31
EP - 43
JO - Theoretical and Applied Genetics
JF - Theoretical and Applied Genetics
IS - 1
ER -