Genetic variants in PPARGC1B and CNTN4 are associated with thromboxane A2 formation and with cardiovascular event free survival in the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)

Nina S. McCarthy, Ciara Vangjeli, Praveen Surendran, Achim Treumann, Cathy Rooney, Emily Ho, Peter Sever, Simon Thom, Alun D. Hughes, Patricia B. Munroe, Philip Howard, Toby Johnson, Mark Caulfield, Denis C. Shields, Eoin O'Brien, Desmond J. Fitzgerald, Alice V. Stanton

Research output: Contribution to journalArticle


Background and aims Elevated urinary 11-dehydro thromboxane B2 (TxB2), a measure of thromboxane A2 formation in vivo, predicts future atherothrombotic events. To further understand this relationship, the genetic determinants of 11-dehydro TxB2 and their associations with cardiovascular morbidity were investigated in this study. Methods Genome-wide and targeted genetic association studies of urinary 11-dehydro TxB2 were conducted in 806 Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) participants. Results The strongest associations were in PPARGC1B (rs4235745, rs32582, rs10515638) and CNTN4 (rs10510230, rs4684343), these 5 single nucleotide polymorphisms (SNPs) were independently associated with 11-dehydro TxB2 formation. Haplotypes of 11-dehydro TxB2 increasing alleles for both PPARGC1B and CNTN4 were significantly associated with 11-dehydro TxB2, explaining 5.2% and 4.5% of the variation in the whole cohort, and 8.8% and 7.9% in participants not taking aspirin, respectively. In a second ASCOT population (n = 6199), addition of these 5 SNPs significantly improved the covariate-only Cox proportional hazards model for cardiovascular events (chisq = 14.7, p=0.01). Two of the risk alleles associated with increased urinary 11-dehydro TxB2 were individually associated with greater incidences of cardiovascular events - rs10515638 (HR = 1.31, p=0.01) and rs10510230 (HR = 1.25, p=0.007); effect sizes were larger in those not taking aspirin. Conclusions PPARGC1B and CNTN4 genotypes are associated with elevated thromboxane A2 formation and with an excess of cardiovascular events. Aspirin appears to blunt these associations. If specific protection of PPARGC1B and CNTN4 variant carriers by aspirin is confirmed by additional studies, PPARGC1B and CNTN4 genotyping could potentially assist in clinical decision making regarding the use of aspirin in primary prevention.

Original languageEnglish
Pages (from-to)42-49
Number of pages8
Publication statusPublished - 1 Feb 2018


Cite this