Geitonogamy in rewarding and unrewarding inflorescences: modelling pollen transfer on actual foraging sequences

J-B. Ferdy, Ann Smithson

    Research output: Contribution to journalArticle

    12 Citations (Scopus)

    Abstract

    Many orchid species are unusual in that they provide no nectar or pollen rewards for their pollinators. Absence of reward is expected to have a fundamental effect on pollinator visitation patterns. In particular the number of flowers visited per inflorescence is expected to be affected in both unrewarding and co-flowering rewarding species. We used arrays of artificial inflorescences, which could be either rewarding or unrewarding and were differentiated by their colour, to test how many flowers bumblebees visit in each type of inflorescence. The frequency of the two colours was varied, thus modelling the case where different frequencies of both an unrewarding and rewarding species were present in a patch. We found that bumblebees visited more flowers per rewarding inflorescence after they have experienced unrewarding or partially emptied rewarding inflorescences. We used these results to simulate pollen transfer and thus predict selfing rates on rewarding inflorescences. We found these increased when nectar depleted or when there was a greater proportion of unrewarding inflorescences in the patch. Conversely, we found that the number of flowers bumblebees visited on each unrewarding inflorescence did not significantly change through experiments. Selfing rates for unrewarding inflorescences were predicted to depend principally on the number of these inflorescences bumblebees visited rather than on the number of flowers they visit per inflorescence. This was because most visitors to orchids are supposed to be naive, and pollinators that commence foraging carrying no pollen will necessarily self any flower they pollinate on the first inflorescence they visit. Thus the average selfing rate is expected to increase as the sequence of inflorescences visited decreases in length.
    Original languageEnglish
    Pages (from-to)155-175
    JournalEvolutionary Ecology
    Volume16
    DOIs
    Publication statusPublished - 2002

    Fingerprint

    geitonogamy
    flower
    pollen
    inflorescences
    foraging
    autogamy
    pollinator
    modeling
    nectar
    Bombus
    flowers
    selfing
    pollinators
    flowering
    color
    Orchidaceae

    Cite this

    @article{d2495e1ed5a54c54a4ccd10a65570cac,
    title = "Geitonogamy in rewarding and unrewarding inflorescences: modelling pollen transfer on actual foraging sequences",
    abstract = "Many orchid species are unusual in that they provide no nectar or pollen rewards for their pollinators. Absence of reward is expected to have a fundamental effect on pollinator visitation patterns. In particular the number of flowers visited per inflorescence is expected to be affected in both unrewarding and co-flowering rewarding species. We used arrays of artificial inflorescences, which could be either rewarding or unrewarding and were differentiated by their colour, to test how many flowers bumblebees visit in each type of inflorescence. The frequency of the two colours was varied, thus modelling the case where different frequencies of both an unrewarding and rewarding species were present in a patch. We found that bumblebees visited more flowers per rewarding inflorescence after they have experienced unrewarding or partially emptied rewarding inflorescences. We used these results to simulate pollen transfer and thus predict selfing rates on rewarding inflorescences. We found these increased when nectar depleted or when there was a greater proportion of unrewarding inflorescences in the patch. Conversely, we found that the number of flowers bumblebees visited on each unrewarding inflorescence did not significantly change through experiments. Selfing rates for unrewarding inflorescences were predicted to depend principally on the number of these inflorescences bumblebees visited rather than on the number of flowers they visit per inflorescence. This was because most visitors to orchids are supposed to be naive, and pollinators that commence foraging carrying no pollen will necessarily self any flower they pollinate on the first inflorescence they visit. Thus the average selfing rate is expected to increase as the sequence of inflorescences visited decreases in length.",
    author = "J-B. Ferdy and Ann Smithson",
    year = "2002",
    doi = "10.1023/A:1016353025378",
    language = "English",
    volume = "16",
    pages = "155--175",
    journal = "Evolutionary Ecology",
    issn = "0269-7653",
    publisher = "Springer",

    }

    Geitonogamy in rewarding and unrewarding inflorescences: modelling pollen transfer on actual foraging sequences. / Ferdy, J-B.; Smithson, Ann.

    In: Evolutionary Ecology, Vol. 16, 2002, p. 155-175.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Geitonogamy in rewarding and unrewarding inflorescences: modelling pollen transfer on actual foraging sequences

    AU - Ferdy, J-B.

    AU - Smithson, Ann

    PY - 2002

    Y1 - 2002

    N2 - Many orchid species are unusual in that they provide no nectar or pollen rewards for their pollinators. Absence of reward is expected to have a fundamental effect on pollinator visitation patterns. In particular the number of flowers visited per inflorescence is expected to be affected in both unrewarding and co-flowering rewarding species. We used arrays of artificial inflorescences, which could be either rewarding or unrewarding and were differentiated by their colour, to test how many flowers bumblebees visit in each type of inflorescence. The frequency of the two colours was varied, thus modelling the case where different frequencies of both an unrewarding and rewarding species were present in a patch. We found that bumblebees visited more flowers per rewarding inflorescence after they have experienced unrewarding or partially emptied rewarding inflorescences. We used these results to simulate pollen transfer and thus predict selfing rates on rewarding inflorescences. We found these increased when nectar depleted or when there was a greater proportion of unrewarding inflorescences in the patch. Conversely, we found that the number of flowers bumblebees visited on each unrewarding inflorescence did not significantly change through experiments. Selfing rates for unrewarding inflorescences were predicted to depend principally on the number of these inflorescences bumblebees visited rather than on the number of flowers they visit per inflorescence. This was because most visitors to orchids are supposed to be naive, and pollinators that commence foraging carrying no pollen will necessarily self any flower they pollinate on the first inflorescence they visit. Thus the average selfing rate is expected to increase as the sequence of inflorescences visited decreases in length.

    AB - Many orchid species are unusual in that they provide no nectar or pollen rewards for their pollinators. Absence of reward is expected to have a fundamental effect on pollinator visitation patterns. In particular the number of flowers visited per inflorescence is expected to be affected in both unrewarding and co-flowering rewarding species. We used arrays of artificial inflorescences, which could be either rewarding or unrewarding and were differentiated by their colour, to test how many flowers bumblebees visit in each type of inflorescence. The frequency of the two colours was varied, thus modelling the case where different frequencies of both an unrewarding and rewarding species were present in a patch. We found that bumblebees visited more flowers per rewarding inflorescence after they have experienced unrewarding or partially emptied rewarding inflorescences. We used these results to simulate pollen transfer and thus predict selfing rates on rewarding inflorescences. We found these increased when nectar depleted or when there was a greater proportion of unrewarding inflorescences in the patch. Conversely, we found that the number of flowers bumblebees visited on each unrewarding inflorescence did not significantly change through experiments. Selfing rates for unrewarding inflorescences were predicted to depend principally on the number of these inflorescences bumblebees visited rather than on the number of flowers they visit per inflorescence. This was because most visitors to orchids are supposed to be naive, and pollinators that commence foraging carrying no pollen will necessarily self any flower they pollinate on the first inflorescence they visit. Thus the average selfing rate is expected to increase as the sequence of inflorescences visited decreases in length.

    U2 - 10.1023/A:1016353025378

    DO - 10.1023/A:1016353025378

    M3 - Article

    VL - 16

    SP - 155

    EP - 175

    JO - Evolutionary Ecology

    JF - Evolutionary Ecology

    SN - 0269-7653

    ER -