Full-wavefield modeling and reverse time migration of laser ultrasound data: A feasibility study

Jeffrey Shragge, T.E. Blum, K. Van Wijk, L. Adam

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)

    Abstract

    © 2015 Society of Exploration Geophysicists. Laser ultrasound (LU) data acquired on cylindrical core samples effectively probe the physical properties of geologic materials. Although most LU analyses focus on estimating and inverting traveltimes of direct arrivals, it is important to recognize that LU data sets can have rich wavefield coda and can now be acquired with a sufficient spatial density to enable the application of exploration seismic full-wavefield techniques such as reverse time migration (RTM) and, potentially, full-waveform inversion (FWI). We have developed a feasibility study that examines the applicability of 2D acoustic forward modeling and 2D RTManalyses on laboratory LU data acquired on cylindrical polymer samples. Forward-modeled waveforms from our numerical tests matched the kinematics of the LU body waves measured through homogeneous samples, as well as the scattered wavefield generated by fractures induced in an otherwisehomogeneous medium. The scattered wavefield is then used in an RTM scheme to directly image millimeter-scale fracture structure.
    Original languageEnglish
    Pages (from-to)D553-D563
    JournalGeophysics
    Volume80
    Issue number6
    DOIs
    Publication statusPublished - 2015

    Cite this