From Stress to Success: Strategies for Improving Heat Tolerance in Wheat

Muhammad Ahmad, Maryium Sajjad, Aman Ullah, Usman Zulfiqar, Sami Ul-Allah, Ejaz Ahmad Waraich, Kaleem ul Din, Kadambot H.M. Siddique, Muhammad Farooq

Research output: Contribution to journalReview articlepeer-review

Abstract

Wheat, a major staple crop, is critical for global food security. However, abiotic stresses, particularly heat stress, threaten crop productivity. With climate change predicted to increase temperatures by around 1.5°C by 2050, crop productivity could be severely affected. Given ongoing hunger-related challenges and the growing global population, developing crop varieties with improved tolerance to abiotic stresses is essential. Plant breeders have long used the natural stress tolerance of crops, selectively breeding cultivars capable of thriving in adverse conditions. Molecular tools have further advanced this success, allowing for identifying and manipulating genes associated with abiotic stress tolerance. Combining traditional breeding methods and innovative biotechnological tools has shown promising results in developing stress-resilient crop varieties. As technology continues to evolve, policy interventions may become more affordable, enabling precise responses to the challenges posed by climate change. Wheat's capacity to withstand heat stress is influenced by both phylogenetic and environmental factors, as revealed by quantitative trait locus mapping and genome-wide association studies. Recently, omics technologies—such as genomics, transcriptomics, metabolomics, proteomics, phenomics, and ionomics—have provided valuable insights into the complex interactions between proteins, metabolites, and genes that govern the wheat phenotype. These approaches, supported by computational tools and bioinformatics, enable a comprehensive understanding of biological processes, aiding in the precise improvement of wheat varieties. Despite advancements, there remains a lack of in-depth studies on precision breeding for abiotic stress tolerance in wheat. This review seeks to address this gap by examining various morphological, physiological, cellular, and molecular adaptation mechanisms to improve heat tolerance in wheat.

Original languageEnglish
Article numbere70048
Pages (from-to)1-25
Number of pages25
JournalJournal of Agronomy and Crop Science
Volume211
Issue number3
Early online date7 Apr 2025
DOIs
Publication statusPublished - May 2025

Fingerprint

Dive into the research topics of 'From Stress to Success: Strategies for Improving Heat Tolerance in Wheat'. Together they form a unique fingerprint.

Cite this