TY - JOUR
T1 - From an Organometallic Monolayer to an Organic Monolayer Covered by Metal Nanoislands: A Simple Thermal Protocol for the Fabrication of the Top Contact Electrode in Molecular Electronic Devices
AU - Ballesteros, L.M.
AU - Martín, S.
AU - Cortés, J.
AU - Marqués-González, S.
AU - Pérez-Murano, F.
AU - Nichols, R.J.
AU - Low, Paul
AU - Cea, P.
PY - 2014/12
Y1 - 2014/12
N2 - In this contribution, a novel method for practical uses in the fabrication of the top contact electrode in a metal/organic monolayer/metal device is presented. The procedure involves the thermally induced decomposition of an organometallic compound, abbreviated as the TIDOC method. Monolayers incorporating the metal organic compounds (MOCs) [[4-{(4-carboxy)ethynyl}phenyl]ethynyl]-(triphenylphosphine)-gold, 1, or [1-isocyano-4-methoxybenzene]-[4-amino-phenylethynyl]-gold, 2, were annealed at moderate temperatures (1: 150 °C for 2h and 2: 100 °C for 2 h), resulting in cleavage of the Au-P or Au-C bond and reduction of Au(I) to Au(0) as metallic gold nanoparticles (GNPs). These particles are distributed on the surface of the film resulting in formation of metal/molecule/GNP sandwich structures. Electrical properties of these nascent devices were determined by recording I–V curves with a conductive-AFM. The I–V curves collected from these metal/organic monolayer/GNPs sandwich structures are typical of metal-molecule-metal junctions, with no low resistance traces characteristic of metallic short circuits observed over a wide range of set-point forces. The TIDOC method is therefore an effective procedure for the fabrication of molecular junctions for the emerging area of molecular electronics.
AB - In this contribution, a novel method for practical uses in the fabrication of the top contact electrode in a metal/organic monolayer/metal device is presented. The procedure involves the thermally induced decomposition of an organometallic compound, abbreviated as the TIDOC method. Monolayers incorporating the metal organic compounds (MOCs) [[4-{(4-carboxy)ethynyl}phenyl]ethynyl]-(triphenylphosphine)-gold, 1, or [1-isocyano-4-methoxybenzene]-[4-amino-phenylethynyl]-gold, 2, were annealed at moderate temperatures (1: 150 °C for 2h and 2: 100 °C for 2 h), resulting in cleavage of the Au-P or Au-C bond and reduction of Au(I) to Au(0) as metallic gold nanoparticles (GNPs). These particles are distributed on the surface of the film resulting in formation of metal/molecule/GNP sandwich structures. Electrical properties of these nascent devices were determined by recording I–V curves with a conductive-AFM. The I–V curves collected from these metal/organic monolayer/GNPs sandwich structures are typical of metal-molecule-metal junctions, with no low resistance traces characteristic of metallic short circuits observed over a wide range of set-point forces. The TIDOC method is therefore an effective procedure for the fabrication of molecular junctions for the emerging area of molecular electronics.
U2 - 10.1002/admi.201400128
DO - 10.1002/admi.201400128
M3 - Article
SN - 2196-7350
VL - 1
SP - (1-6) 1400128
JO - Advanced Materials Interfaces
JF - Advanced Materials Interfaces
IS - 9
ER -