Frequency-weighted H-2-pseudo-optimal model order reduction

Umair Zulfiqar, Victor Sreeram, Mian Ilyas Ahmad, Xin Du

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


The frequency-weighted model order reduction techniques are used to find a lower-order approximation of the high-order system that exhibits high-fidelity within the frequency region emphasized by the frequency weights. In this paper, we investigate the frequency-weighted H-2-pseudo-optimal model order reduction problem wherein a subset of the optimality conditions for the local optimum is attempted to be satisfied. We propose two iteration-free algorithms, for the single-sided frequency-weighted case of H-2-model reduction, where a subset of the optimality conditions is ensured by the reduced system. In addition, the reduced systems retain the stability property of the original system. We also present an iterative algorithm for the double-sided frequency-weighted case, which constructs a reduced-order model that tends to satisfy a subset of the first-order optimality conditions for the local optimum. The proposed algorithm is computationally efficient as compared to the existing algorithms. We validate the theory developed in this paper on three numerical examples.

Original languageEnglish
Pages (from-to)622-653
Number of pages32
JournalIMA Journal of Mathematical Control and Information
Issue number2
Publication statusPublished - Jun 2021


Dive into the research topics of 'Frequency-weighted H-2-pseudo-optimal model order reduction'. Together they form a unique fingerprint.

Cite this