Fractional turnover of apolipoprotein(a) and apolipoprotein B-100 within plasma lipoprotein(a) particles in statin-treated patients with elevated and normal Lp(a) concentration

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Context: Lipoprotein(a) [Lp(a)] is a highly atherogenic lipoprotein characterized by apolipoprotein(a) [apo(a)] covalently bounded to apoB-100 (apoB). However, the metabolism of apo(a) and apoB within plasma Lp(a) particles in patients on statins remains unclear. Methods: The kinetics of Lp(a)-apo(a) and Lp(a)-apoB were determined in 20 patients with elevated Lp(a) (≥0.8 g/L; n = 10) and normal Lp(a) (≤0.3 g/L; n = 10) using stable isotope techniques and compartmental modeling. Plasma apo(a) concentration was measured using liquid chromatography–mass spectrometry. All patients were on statin therapy and were studied in the fasting state. Results: The fractional catabolic rate (FCR) of Lp(a)-apo(a) was not significantly different from that of Lp(a)-apoB in statin-treated patients with elevated or normal Lp(a) (P > 0.05 in both). Lp(a)-apo(a) FCR was significantly correlated with Lp(a)-apoB in patients with elevated and normal Lp(a) concentrations (r = 0.970 and r = 0.979, respectively; all P <0.001) with Lin's concordance test showing substantial agreement between the FCRs of Lp(a)-apo(a) and Lp(a)-apoB in patients with elevated and normal Lp(a) concentrations (r c = 0.978 and r c = 0.966, respectively). Conclusion: Our data indicate that the apo(a) and apoB proteins within Lp(a) particles have similar FCR and are therefore tightly coupled as an Lp(a) holoparticle in statin-treated patients with elevated and normal Lp(a) concentrations.

Original languageEnglish
Pages (from-to)8-11
Number of pages4
JournalMetabolism: clinical and experimental
Volume96
DOIs
Publication statusPublished - 1 Jul 2019

Fingerprint Dive into the research topics of 'Fractional turnover of apolipoprotein(a) and apolipoprotein B-100 within plasma lipoprotein(a) particles in statin-treated patients with elevated and normal Lp(a) concentration'. Together they form a unique fingerprint.

Cite this