Four-dimensional transform fault processes: progressive evolution of step-overs and bends

J.V. Wakabayaski, James Hengesh, T.L. Sawyer

    Research output: Contribution to journalArticlepeer-review

    94 Citations (Scopus)

    Abstract

    Many bends or step-overs along strike-slip faults may evolve by propagation of the strike-slip fault on one side of the structure and progressive shut-off of the strike-slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike-slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand. (C) 2004 Elsevier B.V. All rights reserved.
    Original languageEnglish
    Pages (from-to)279-301
    JournalTectonophysics
    Volume392
    Issue number1-4
    DOIs
    Publication statusPublished - 2004

    Fingerprint

    Dive into the research topics of 'Four-dimensional transform fault processes: progressive evolution of step-overs and bends'. Together they form a unique fingerprint.

    Cite this