Projects per year
Abstract
This paper explores the response of a wave energy device during extreme and operational conditions and the effect of this response on the geotechnical stability of the associated taut moorings. The non-hydrostatic wave-flow model SWASH is used to simulate the response of a taut-moored wave energy converter. The predicted forces acting on the mooring system are used to compute the build-up of excess pore pressures in the soil around the mooring anchor and the resulting changes in strength and capacity. An initial loss of strength is followed by a subsequent increase in capacity, associated with long-term cyclic loading and hardening due to consolidation. The analyses show how cyclic loading may actually benefit and reduce anchoring requirements for wave energy devices. It demonstrates the viability of a close interdisciplinary approach towards an optimized and cost-effective design of mooring systems, which form a significant proportion of expected capital expenditures.
Original language | English |
---|---|
Title of host publication | Ocean Renewable Energy |
Place of Publication | USA |
Publisher | The American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791858899 |
Publication status | Published - 2019 |
Event | ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019 - Glasgow, United Kingdom Duration: 9 Jun 2019 → 14 Jun 2019 |
Publication series
Name | Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE |
---|---|
Volume | 10 |
Conference
Conference | ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019 |
---|---|
Country | United Kingdom |
City | Glasgow |
Period | 9/06/19 → 14/06/19 |
Fingerprint Dive into the research topics of 'Fluid-structure-soil interaction of a moored wave energy device'. Together they form a unique fingerprint.
Projects
- 1 Active
-
ARC ITRH for Offshore Floating Facilities
Watson, P., Cassidy, M., Efthymiou, M., Ivey, G., Jones, N., Cheng, L., Draper, S., Zhao, M., Randolph, M., Gaudin, C., O'Loughlin, C., Hodkiewicz, M., Cripps, E., Zhao, W., Wolgamot, H., White, D., Doherty, J., Taylor, P., Stanier, S. & Gourvenec, S.
1/01/14 → 30/12/22
Project: Research