TY - JOUR
T1 - First stage of LISA data processing. II. Alternative filtering dynamic models for LISA
AU - Wang, Yan
AU - Heinzel, G.
AU - Danzmann, K.
PY - 2015/8/20
Y1 - 2015/8/20
N2 - © 2015 American Physical Society. Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak, Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang, Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.
AB - © 2015 American Physical Society. Space-borne gravitational wave detectors, such as (e)LISA, are designed to operate in the low-frequency band (mHz to Hz), where there is a variety of gravitational wave sources of great scientific value [arXiv:1305.5720 and S. Babak, Classical Quantum Gravity 28, 114001 (2011)]. To achieve the extraordinary sensitivity of these detectors, the precise synchronization of the clocks on the separate spacecraft and the accurate determination of the interspacecraft distances are important ingredients. In our previous paper [Y. Wang, Phys. Rev. D 90, 064016 (2014)], we have described a hybrid-extend Kalman filter with a full state vector to do this job. In this paper, we explore several different state vectors and their corresponding (phenomenological) dynamic models to reduce the redundancy in the full state vector, to accelerate the algorithm, and to make the algorithm easily extendable to more complicated scenarios.
U2 - 10.1103/PhysRevD.92.044037
DO - 10.1103/PhysRevD.92.044037
M3 - Article
VL - 92
SP - 044037-1 - 044037-11
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
SN - 1550-7998
IS - 4
ER -