First Results from Sentinel-1A InSAR over Australia: Application to the Perth Basin

Amy L. Parker, Mick S. Filmer, William Featherstone

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)


Past ground-based geodetic measurements in the Perth Basin, Australia, record small-magnitude subsidence (up to 7 mm/y), but are limited to discrete points or traverses across parts of the metropolitan area. Here, we investigate deformation over a much larger region by performing the first application of Sentinel-1A InSAR data to Australia. The duration of the study is short (0.7 y), as dictated by the availability of Sentinel-1A data. Despite this limited observation period, verification of Sentinel-1A with continuous GPS and independent TerraSAR-X provides new insights into the deformation field of the Perth Basin. The displacements recorded by each satellite are in agreement, identifying broad (>5 km wide) areas of subsidence at rates up to 15 mm/y. Subsidence at rates greater than 20 mm/y over smaller regions (approximate to 2 km wide) is coincident with wetland areas, where displacements are temporally correlated with changes in groundwater levels in the unconfined aquifer. Longer InSAR time series are required to determine whether these measured displacements are representative of long-term deformation or (more likely) seasonal variations. However, the agreement between datasets demonstrates the ability of Sentinel-1A to detect small-magnitude deformation over different spatial scales (from 2 km-10 s of km) in the Perth Basin. We suggest that, even over short time periods, these data are useful as a reconnaissance tool to identify regions for subsequent targeted studies, particularly given the large swath size of radar acquisitions, which facilitates analysis of a broader portion of the deformation field than ground-based methods or single scenes of TerraSAR-X.

Original languageEnglish
Article number299
Number of pages19
JournalRemote Sensing
Issue number3
Publication statusPublished - Mar 2017
Externally publishedYes


Dive into the research topics of 'First Results from Sentinel-1A InSAR over Australia: Application to the Perth Basin'. Together they form a unique fingerprint.

Cite this